Algorithms for Permutation Groups

Jonathan Conder

Department of Mathematics
The University of Auckland

Supervisor: Eamonn O’Brien

A dissertation submitted in partial fulfillment of the requirements for the degree of
BSc(Hons) in Mathematics, The University of Auckland, 2012.

Abstract

We present two randomised algorithms to recognise the alternating or symmetric groups
of a given degree. The first takes as input a permutation group G acting on some finite
set © and determines whether Alt (2) < G. The second takes a black-box group G
and an integer n > 5, and reports whether G ~ A, or G ~ S,. If an isomorphism is
found, the second algorithm returns functions which can be used to compute it in either
direction.

We discuss important concepts from the theory of permutation groups, and prove several
related results. To estimate probabilities for the success of each algorithm, we also

present several results which are statistical in nature.

Contents

Abstract

1 Introduction
1.1 Motivation

1.2 Permutation groups L oL

1.3 Examples of permutation groups

2 Identifying permutation groups

2.1 Motivation

2.2 Primitive permutation groups
2.3 Identifying Alt (2) or Sym ()
2.4 An algorithm to identify Alt () or Sym(Q)

3 Constructive recognition of A, and S,

3.1 Motivation

3.2 Presentations for the alternating groups

3.3 Computing the inverse image of a permutation

3.4 Determining the image a black-box group element

3.5 Permutation groups of small degree

3.6 Finding alternating generators

3.7 Finding input cycles

3.8 Performance

References

N O ot W

11
11
11
13
20

23
23
23
27
33
42
46
92
68

71

CONTENTS

Chapter 1

Introduction

1.1 Motivation

A central tool in computational group theory is the Schreier-Sims algorithm for com-
puting a strong generating set for a permutation group G [1, Chapter 4]. It takes as
input a base for GG, that is, a list of points in the permutation domain such that no
element of GG except the identity fixes them all. Among other applications, the resulting
information can be used to compute the order of G, and it simplifies the task of deciding
whether a given permutation is a member of G [1, p. 79]. This approach is particularly
efficient if G has a small base relative to its degree. Many interesting groups have this
property [1, p. 59], but there are important exceptions, such as the alternating and
symmetric groups. Indeed, a base for the symmetric group can exclude only one point
of the permutation domain; bases for the alternating group can omit at most two. As
such, the Schreier-Sims algorithm performs badly for these groups. However, if G is
known to be one of these groups, it is trivial to compute |G| or determine whether some
permutation lies in GG. So it would be useful if we could identify these groups and handle
them separately.

We present randomised algorithms to determine whether a given finite group is isomor-
phic to the symmetric or alternating group of a given degree. The first only answers
this question for permutation representations of the given degree; the second works
for every representation in which products, inverses and equality can be computed. In

addition, the second algorithm produces an isomorphism between the input group and

6 CHAPTER 1. INTRODUCTION

the corresponding permutation group, and these isomorphisms are constructive and

realised efficiently.

1.2 Permutation groups

We use N to denote the natural numbers, including 0, and P for the positive integers.
For each n € P we write N,, for the set {0,1,...,n— 1}, and P, for {1,2,...,n}.

Definition 1.2.1. If Q # &, then Sym (Q) = {f : Q@ — Q| f is bijective} forms a group
under the operation o (function composition). It is the symmetric group on Q. The

symmetric group of degree n, written Sy, is Sym (IP,) .

In what follows we assume that €2 is an arbitrary non-empty set. The symbol o will
usually be omitted, and functions will act from the right rather than the left. For
example, given w € Q and g,h € Sym () we write w9 = (wg)h to represent the
application of g, followed by h, to w. We use AY to denote the image of some A C 2
under g. The notation [[" | g; = g192 . .. gn represents the product of several elements
91,925 - -, gn € Sym (). We adopt the convention that H?zl gi = 1, where 1 = 1q is

the identity function. In other contexts 1 may also represent the trivial group {1q}.
Definition 1.2.2. A subgroup of a symmetric group is a permutation group.
Theorem 1.2.3 (Cayley). Every group is isomorphic to some permutation group.

Proof. Let G be a group. For each g € G define the function 6, : G — G by h% = hg
for all h € G. It follows from the existence of g~! that fy is a bijection, and hence
0, € Sym (G) . Now define the function ¢ : G — Sym (G) by g® =0, for all g € G. It is
straightforward to check that ¢ is a group homomorphism. Indeed, 6, o 8;, = 0, for all
g,h € G. This implies that G < Sym (G) is a permutation group. It remains to show
that G ~ G?, which is straightforward because ¢ is an isomorphism from G — G¢.
Indeed, ¢ is onto its image G, and is injective because if 6, =), for some g,h € G
then g = 1% = 1% = h. O

Definition 1.2.4. Let g € Sym (€2) . The set of fized points of g is fix (¢9) = {w € Q | W9 = w},
and the support of g is supp (g) = Q \ fix (g) .

1.3. EXAMPLES OF PERMUTATION GROUPS 7

Definition 1.2.5. Let n € P\ {1} and wg, w1, ...,w,—1 € Q be pairwise distinct. We
denote by (wp w1 ... wy—1) the permutation g € Sym (2) defined by w! = W(i+1) mod n
for all i € N,,, and w9 = w for all remaining w € . This function is a cycle of length
n, or an n-cycle, and its support is {wp,w1,...,wn—1}. Two cycles g, h € Sym (Q2) are

disjoint if supp (g) Nsupp (h) = 2.

1.3 Examples of permutation groups

The definitions in this section, and the proofs of Lemmas 1.3.6 and 1.3.8, are inspired
by [2].

Definition 1.3.1. Let G < Sym (92) . For each w € €, the set G, = {g € G | w9 = g} is
the stabiliser of w in G. Given A C Q, the restriction of G to A'is G|y =(yeq\a G-
The setwise stabiliser of A 'in G is Go = {g € G | A9 = A}.

Lemma 1.3.2. If G < Sym (), w € Q and A C Q, then G, G|»,Ga < G.

Proof. Clearly 1 € G,,. Also w € fix (g) N fix (h) = fix (¢~ 1) Nfix (k) C fix (g7 'h) , and

hence ¢g~'h € G, for all g, h € G,,. Therefore G, < G.

Hence G|, = sea\a Go < G, as the set of subgroups of G is closed under intersection.
1

Clearly 1 € Ga. Let g,h € Ga. Then A9 = A, so that AY ' = A% ' = A and hence
A9 'h = Ah = A. Therefore g~'h € Ga, so Ga < G. O

Definition 1.3.3. Let G < Sym () and w € Q. The orbit of w under G is W =
{w9 | g € G}.

Definition 1.3.4. The finitary symmetric group on € is the set of elements of Sym (€2)
with finite support. It is written FSym (Q2) = {f € Sym () | supp (f) is finite} .

Lemma 1.3.5. The finitary symmetric group on 2 is a normal subgroup of Sym ().

Proof. Clearly supp (1) = @ is finite, so 1 € FSym (Q2) . Now let g, h € FSym (€2) . Since
fix (g) Nfix (h) C fix (g_lh) , by definition supp (g_lh) C supp (g) Usupp (h) , which is
finite. Therefore g~'h € FSym (£2), which shows that FSym (Q) < Sym () .

Let x € Sym () and w € Q. Then g fixes w if and only if z71gx fixes w®. This implies
that supp (95_1 g:c) = supp (¢)*, which has the same cardinality as supp (g) since z is a
bijection. Hence z~!gz € FSym (£2), which shows that FSym () < Sym (92). O

8 CHAPTER 1. INTRODUCTION

Lemma 1.3.6. Each g € FSym () is the product of a unique set of pairwise disjoint

cycles.

Proof. Suppose to the contrary that some g € FSym (€2) cannot be uniquely expressed
as the product of a set of pairwise disjoint cycles, and choose g with |supp (¢g)| minimal.
Then g # 1, as 1 is the product of zero cycles, and every other product of pairwise disjoint
cycles has non-empty support. Therefore supp (g) # &, and there exists w € supp (g) .
Note that supp (gl) C supp (g) for all i € Z, so w!9) C supp (g) is finite. Hence there
exist distinct ¢, j € Z such that w9 = w9 . Choose i and j with n := j — ¢ € P minimal.
= w9 and w ¢ fix(g). Moreover w,w?,...,w9" ' are

n—1

pairwise distinct, which means x = (w w9 ... w9 is an n-cycle. Clearly g maps

—1i

. j
Then n > 2, since w = w99

g(i+1) mod n

w9 w for all i € N,,, so h := 2~ g has support supp (g) \ w9, and hence it
can be uniquely expressed as the product of a set X C FSym (Q2) of pairwise disjoint
cycles, each of which fix w9 pointwise. Therefore X U {x} is a set of pairwise disjoint
cycles whose product is hx = zh = g.

This implies that g is the product of a different set Y C FSym (Q2) of pairwise disjoint
cycles. There is exactly one y € Y such that w € supp (y). Since y is disjoint from
the other cycles in Y, it maps w +— w9. Hence w9 ¢ fix(y), and it follows by a
gt o all i € N,,. The
remaining elements of €2 are fixed by y, since y is a cycle. Therefore y = x, so h is
the product of the cycles in Y \ {y}, and hence Y\ {y} = X. This is a contradiction

because Y # X U {z}. O

straightforward induction argument that y maps w9 w

Definition 1.3.7. Let g € FSym (). The cycle structure of g is the unique set
X C FSym () of pairwise disjoint cycles such that g is the product of the cycles in X.
If z € X then g contains the cycle x. Moreover, if m = |supp (¢)| and n = |X|, then
the parity of g is 7 (g) = (m —n) mod 2. An even permutation is one with parity 0,

and an odd permutation is one with parity 1.

Lemma 1.3.8. Let g € FSym (£2). Then ¢ can be expressed as a product of 2-cycles.

If g can be written as the product of n 2-cycles, then n = 7 (¢g) mod 2.

Proof. By Lemma 1.3.6, it suffices to show that every cycle can be expressed as a
product of 2-cycles. To this end, let n € P and wg, w1, ...,w, € € be pairwise distinct.
Then

(wo w1 -+ wp) = (wp wi) (wo w2) ... (wo wp) -

1.3. EXAMPLES OF PERMUTATION GROUPS 9

Now let A,z € FSym () such that z is a 2-cycle. Then h is the product of a unique set
X C FSym () of pairwise disjoint cycles, while x = (« [3) for some distinct o, § € Q. If
supp (h) N{a, } = &, then X U{z} is a set of pairwise disjoint cycles whose product is
hz, so w (hz) = w (h) + 1 mod 2. Otherwise, suppose that supp (h) N {«, 8} = {«, 5}.
Then there exist cycles x1,x2 € X such that o € supp (1) and 8 € supp (z2) . Suppose

that z1 # xo. Write 21 = (¢ w1 -+ wp) and 9 = (6 01 -+ o,) for some m,n € P and
W1, W, -+ y W,y 01,02, ..., 0, € Q. It follows that

and hence 7 (hz) = 7 (h) + 1 mod 2. Otherwise x; = x2, and there exist m,n € N and

W1, W2y v oy Win,y 01,09, ...,0, €) such that 1 = (¢ wy -+ wy o1 -+ o). Hence

rzr=(aw - wypBor - op)(aB)=(aw - wp)(Bor - on),

so 7 (hx) =m(h)—1 =7 (h)+1 mod 2. For the remaining case, |supp (h) N {«, 5}| = 1.
Without loss of generality assume that supp (h) N {a, 8} = {a}. Then there exists
z1 € X such that o € supp (z1) (whereas 8 € fix (z1)). Write 21 = (0 w1 -+ wp,) for
some m € P and wy,wa, ...,wy € Q. It follows that 7 (hz) = 7 (h) + 1 mod 2, since

riz=(aw - wy)(lapf)=(aw - wy B).

In summary, 7 (hz) = 7 (h) + 1 mod 2 for all h,z € FSym (Q) such that z is a 2-cycle.
Now let n € N and z1, 29, ..., 2, € FSym (Q) be 2-cycles such that g = [[;; z;. Then

n—1
Tr(g)zﬂ'(g:nn)—lz---zw(gnxni) —n=7(1l) —n=nmod 2,
=0

as required.]

Definition 1.3.9. The alternating group on €2 is Alt (2) = {g € FSym () | g is even},
and the alternating group of degree n, written A,, is Alt (P,,).

Lemma 1.3.10. The alternating group on {2 is a normal subgroup of Sym (€2), and
hence FSym (€2) . Moreover, if [©2] > 2 then [FSym (2) : Alt ()] = 2.

Proof. Clearly 1 € Alt(Q2), as w(1) = 0. Let g,h € Alt(Q2). By Lemma 1.3.8, g =
[[i%, z; and h =[]}, y; for some m,n € N and 2-cycles z1, %2, ..., Tm, Y1,Y2,- - Yn €

10 CHAPTER 1. INTRODUCTION

FSym (2) such that m = n = 0 mod 2. It follows that g~ 'h =]_[2161 Tm—i [[1 ¥i is
even, and hence g~'h € Alt (Q). This shows that Alt () < FSym () < Sym (9).

Let x € Sym (). Then 2~ tgx = [[[%, 2 'x;x is an even permutation, since z~1z;x is
a 2-cycle with support supp (z;)”, for all i € P,,,. Therefore x~1gx € Alt (), and hence
Alt (2) < Sym (2) . This implies that Alt (2) < FSym (Q2).

Suppose that Q2] > 2. Then there exists a 2-cycle y € FSym (Q2), and g — gy is a
bijection between Alt (©2) and FSym (Q2) \ Alt (2). Therefore |FSym () : Alt ()] =

2. O

Chapter 2

Identifying permutation groups

2.1 Motivation

The aim of this chapter is to present an algorithm which, given a permutation group G
acting on some finite set €2, determines whether G is Alt () or Sym () . It is a one-sided
Monte Carlo algorithm, which means that it may (with a user-specified probability)
incorrectly report that G is not Alt (©2) or Sym (2) . However, it only reports that G
is Alt (2) or Sym (Q) if this is true. The first step towards this is to identify some
properties of permutation groups (transitivity and primitivity) which the alternating
and symmetric groups possess, and can be decided efficiently by a computer. If the
input group has one of these properties, it is not difficult to determine (using a one-sided
Monte Carlo algorithm) whether it contains Alt (©2). Otherwise, the algorithm can
report with certainty that G is not Alt (©2) or Sym (£2) . The final algorithm is described
in [1, pp. 226-7], but many of the preliminary results, namely Theorems 2.3.1 and 2.3.9,
Corollary 2.3.2 and Lemma 2.3.6, are taken from [2].

2.2 Primitive permutation groups

Definition 2.2.1. Let G < Sym (Q2) and ¥ C Q be non-empty. Then G acts on ¥ if
G|y, = G. Suppose that G acts on 3, and let A C . Then A is a block for G in ¥ if
AY is either equal to or disjoint from A for all g € G.

11

12 CHAPTER 2. IDENTIFYING PERMUTATION GROUPS

Example 2.2.2. Let G < Sym (2) act on some ¥ C Q. Then @, ¥ and all singleton
subsets of ¥ are blocks for G in Y. These are the t¢rivial blocks for G.

Example 2.2.3. Let G < Sym (Z) be the group of permutations corresponding to
addition in Z (this is the image Z?® from Theorem 1.2.3). Also let n € Z. Then nZ is a
block for G in Z. It is also a non-trivial block provided that n ¢ {—1,0,1}.

Definition 2.2.4. Let G < Sym (2) act on some 3 C Q. Then G acts transitively on X
if for each pair o, 3 € ¥ there exists g € G such that o9 = § (equivalently, if c& = %
for all o € ¥). If, in addition, there are no non-trivial blocks for G in ¥, then G acts
primitively on ¥.. Moreover, if G acts transitively (primitively) on €, it is transitive

(primitive).

Lemma 2.2.5. If || # 2 then Sym (2) , FSym () and Alt () are primitive. Moreover,
Sym (§2) and FSym () are primitive even if |Q] = 2.

Proof. 1f |©2] = 1 then Sym (©2) = FSym (2) = Alt () = 1 is clearly transitive. Suppose
that |Q] = 2, and write Q = {«, 5}. Then (a 8) € FSym (2), so Sym () = FSym (2)
is transitive. Otherwise |2 > 2. Let «, 8 € Q be distinct. Then there is a third distinct
v e Q and (afv) = (av)(Bv) € Alt () < FSym (2) < Sym (2) maps o — f3.
Therefore Sym (£2) , FSym (©2) and Alt () are transitive.

Now let A € Q with |A] > 2. Then there exist distinct o, € A and v € Q\ A. It
follows that g == (a S) € Alt () < FSym (2) < Sym (2). But g € A9 N A and
v € A9\ A, which means A is not a block for Sym (2), FSym (Q) or Alt () in Q.
Therefore each group has no non-trivial blocks, so each is primitive except for Alt (2)
when || = 2. O

We observe in Lemma 2.2.7 that Ay is actually the only imprimitive permutation group

with no non-trivial blocks.

Lemma 2.2.6. Let G < Sym (£2) act on some 3 C Q. Also let A C ¥, and suppose that
A is not a block for G in ¥. Then there exists g € G such that A9\ A # @ # AINA.

Proof. Since A is not a block for G in X, there exists g € G such that AY N A # & and
A9 £ AT A9\ A # & then we are done. Otherwise A9 C A, so it cannot be the case
1

that A C AY. Hence there exists § € A\ AY. It follows that 69 € A9 '\ A, because
if 97" € A then § = 69 '9 € AY. Moreover, there exists w € A9 N A, which implies

2.3. IDENTIFYING Alt () OR Sym () 13

1 1

that w9 € A9 NA9 " =AY 'NA. Hence A9\ A # @ and A9 NA # @, as
required. O

Lemma 2.2.7. Let G < Sym (©2) act on some ¥ C Q. Suppose that |X| > 3, and there

are no non-trivial blocks for GG in ¥. Then G acts primitively on X.

Proof. Suppose that G does not act transitively on . Then there exists o € ¥ such
that 0@ # X. Clearly 0 € 0% # @. Suppose that ‘O‘G’ = 1. Then A =%\ 0% C U is
not a block for G in ¥, since |A| = |X| — 1 > 2. By Lemma 2.2.6 there exists g € G
such that A9\ A # @. Since A9\ A C ¥\ A = ¢% = {5}, it follows that o € A9. This
leads to the contradiction 09 ' € A =% \ 0@. Otherwise }UG’ > 2, 50 ¢ is not a block
for G in ¥. By Lemma 2.2.6, there exists g € GG such that (O'G)g \ 0¥ # @. Choose
w € (O’G)g \ 0%. Then w = a9 for some a € ¢“. Furthermore, a = ¢" for some h € G.
But this implies that w = (O'h)g = 0", which contradicts w ¢ ¢@. Therefore G acts
transitively on >, and since there are no non-trivial blocks for G in ¥ it follows that G

acts primitively on X. O

2.3 Identifying Alt (2) or Sym (Q2)

The following theorem is due to Jordan [3], and the proof we present can be found in
[2, p. 77]. A few gaps have been filled for the case where is infinite, which requires
Lemma 2.2.6 and Zorn’s Lemma. It can be used to identify a permutation group, by
checking if it is primitive and searching for a 3-cycle. This is not the approach we adopt,

but our algorithm relies on Jordan’s result.

Theorem 2.3.1. Let G < Sym (2) be primitive, and suppose it contains a 3-cycle x.
Then Alt(Q2) < G.

Proof. For each A C Q let Ax = Alt ()|, = {g € Alt (Q) | supp (g9) € A}. We note
that Aa is a subgroup of Alt (2) isomorphic to Alt (A), although this fact will not
be required for the proof. Let W = {A C Q| supp (z) € A and Apn C G} be partially
ordered by set inclusion. The only even permutations with support contained in supp ()
are 1, z and 271, 80 Agupp(z) = {1, 2,271} € G and hence supp (x) € W. In particular
W # @. Let D C W be a non-empty chain, and let g € A p. Then supp (9) € JD is
finite, so supp (¢g) € A for some A € D. It follows that g € Ax C G, which implies that

14 CHAPTER 2. IDENTIFYING PERMUTATION GROUPS

Ayp € G. Therefore UD € W is an upper bound for D. By Zorn’s lemma it follows
that there is a maximal element A € W.!

Suppose for a contradiction that A # 2. Since G is primitive and |A| > [supp (x)| = 3,
it follows that A is not a block for G in €. By Lemma 2.2.6, there exists g € G such that
AI\A # @ and AYNA # @. Therefore there exist « € A9\ A and f € AYINA. Suppose
that |[AY N A] > 1. Then there exists v € A9 N A distinct from « and . These are all
elements of AY so =79, B = p9 and v = 19 for some distinct 7, u, v € A. It follows
that (a) =g ' (t pv)g € G, since (17 uv) € Ax C G. Otherwise |[AINA| =1,
and hence A9 N A = {B}. Since |A| > 3 we can choose a 3-cycle (8 v J) € Ax C G.
Also choose ¢ € AY distinct from « and 3, which will not be v or § since v, € A.
Then a = 79, 8 = 9 and ¢ = V9 for some distinct 7,u,v € A. It follows that
(aBe)=gl(rpnv)geq,since (1 pv) € Ax C G. Therefore

(@By)=(aBe)(dvB)(eBa)Byd)=|aBe) ", (Bvd)|€C.

In either case, there exists a v € A such that (¢ Bv) € G. Let I' = AU {a} D A,
so that I' ¢ W. This implies that Ar € G, so there exists y € Alt (Q2) \ G such that
supp (y) C I'. Clearly a¥ # «, since otherwise y € Ax C G. In fact o¥ € A, since if
a¥ ¢ T then it is a fixed point of y, so that a¥¥ = o¥ and y is not injective. Now let
z € Ap map o¥ — v (take z = 1 if a¥ = «y, orelse z = (a¥ 7 ¢) for some € € A\ {a¥,~}).
Then yz (a 5 7v) € Alt () fixes o and elements of Q\ I', which means it lies in Ax C G.
Since z (a f v) € G as well, it follows that y € G, which is a contradiction. Therefore
A = Q, which implies that Alt () = Aqg C G. O

Corollary 2.3.2. Let G < Sym (€2) be primitive, and suppose it contains a 2-cycle
x = (a B). Then FSym (2) < G.

Proof. 1f || < 2 then G = (z) = Sym (£2) . Otherwise |Q2| > 3, so that supp (z) = {a, 8}
is not a block for G in Q. Therefore {c, 3} N{a, 8} # @ and {«, B}’ # {«, B} for some
g € G. Without loss of generality take {«, 3}’ = {«,~} for some v € Q distinct from «
and . Then either o9 = « and 9 = ~, or a9 = v and 89 = «. In both cases it follows

!This relies on the axiom of choice, which is not required when € is finite. To show this, suppose W
has no maximal element. Then each member of W is properly contained within another one, so we
can find an infinite strictly increasing sequence supp (z) = Ag C Ay C - -+ of members of W. But then
!A‘Q‘| > |Q|, which contradicts Ajg) C Q.

2.3. IDENTIFYING Alt () OR Sym () 15

that
(@aBy)=(Ba)g ' (aB)g=[zg]€G.

Therefore Alt (©2) < G by Theorem 2.3.1. Since Alt () < ((a), Alt (2)) < FSym (),
it follows from Lemma 1.3.10 that FSym (2) = ((a 8),Alt (Q2)) < G. O

We aim to generalise this result to a larger class of cycles of prime length, for the case

where 2 is finite. To do so, we require several preliminary results.

Lemma 2.3.3. Let G < Sym (Q2) act on some ¥ C Q. Suppose that p := |X| is prime,
and there is a p-cycle x € G. Then G acts primitively on X.

Proof. Clearly supp (z) = %, so G acts transitively on ¥. Enumerate ¥ as 0, 01,...,0p—1
in such a way that © = (09 01 ... 0p—1). Let A C ¥ with |A| > 2. Then there exist
distinct 4,5 € N, such that 0;,0; € A. Without loss of generality, we can assume
that i < j. Clearly g := 2/~* € G maps o}, — O (ktj—i) mod p f0T all & € N, and hence
o/ = o; € AN A. Suppose for a contradiction that A9 = A. Then Uf" € A for all
n € N, by a straightforward induction argument. Let k € N, be such that o}, € ¥\ A.
Also, note that j —i € Ny, \ {0} has a multiplicative inverse, say m, in N, \ {0}. It follows
that or = 0(i4(j—i)n) mod p = afn € A, where n := m (p+ k — i) € N. This contradicts
or ¢ A, so A9 # A. Therefore A is not a block for G in ¥, which implies that G acts
primitively on X. O

Lemma 2.3.4. Let G < Sym (Q2) and g € G. Also let A C Q, and suppose that G|
acts primitively on A. Then G| acts primitively on I' .= AY.

Proof. Clearly each h € G| fixes every w € Q\ I, and hence G| acts on I'. Now
let a, 8 € I'. Then there exist 7,0 € A such that o = 79 and § = ¢9. Since G|,
acts transitively on A, there also exists h € G|, such that A" = 6. Tt follows that
a9 'hg = yhg = §9 = B If e € Q\ T then e ¢ A, so ¢ is fixed by g~'hg, which
therefore lies in G| . This shows that G| acts transitively on I'.

Let A C T with |[A| > 2. Then A9 ' C A and ‘qu} = |A| > 2,50 A9 is not a block for

1

G| in A. Hence there exists h € G|, such that ATTRAANST £ g but AR £ AT
It follows that A9 79 N A # @ but A9 "9 £ A. Therefore A is not a block for G|y in
I, since g~*hg € G| as shown above. This implies that G| acts primitively on I'. [

16 CHAPTER 2. IDENTIFYING PERMUTATION GROUPS

Lemma 2.3.5. Let G, H < Sym () act primitively on some A,I" C respectively.
Further, suppose that A NT # &. Then (G, H) acts primitively on AUT.

Proof. Since (G,H)|p r < (G, H) contains both G and H, it also contains (G, H),
which implies that (G, H) = (G, H)| 5 acts on AUT. If [AUT| <2 then AUT is one
of A or I', and the result is clear. Otherwise |[AUT| > 3. Let A C AUT with |A] > 2.
Then there exists w € (AUT) \ A. Without loss of generality assume that w € A.
Suppose that A C A. Then A C A since w € A\ A. This implies that A is not a block
for G in A, so there exists g € GG such that A9 is neither disjoint from, nor equal to, A.
Since g € G < (G, H) , it follows that A is not a block for (G, H) in AUT.

Now suppose that ANA = @&. Then A C T, and in fact A Cc " : if A = I' it would
contain ANT # & (but ANA = &). As above, it follows that A is not a block for
(G,H) in AUT.

Otherwise A Z A and AN A # &, so there exist v € A\ A and § € AN A. Since
G acts transitively on A, there exists g € G < (G, H) such that §9 = w. Therefore
w € A9\ A, which implies that A9 # A. Moreover g fixes 7, since supp (g) C A, and
hence v € A9 N A # @. This shows that A is not a block for (G, H) in AUT.
Therefore (G, H) acts primitively on A UT', by Lemma 2.2.7. O

Lemma 2.3.6. Suppose that || > 2, and let G < Sym (£2) be primitive. Then G, is a

maximal subgroup of G for all w € €.

Proof. Let w,v € Q be distinct. Since G is transitive, there exists g € G such that
w9 = v # w. Therefore g € G\ G, # &. Now let H < G with G,, < H. Then there exists
h € H\ Gy, so that w ¢ fix (h) . Since w,w" € w!| this implies that ‘wH‘ > 2. Suppose
for a contradiction that w? # Q. Then w!! is not a block for G in €, as G is primitive.
Hence by Lemma 2.2.6, there exists g € G such that (wH)g Nwi £ @+ (wH)g \ wh.
Therefore w9 = wh? and w9 ¢ W for some hy, he, hs € H. In particular hsg ¢ H,
which implies that g ¢ H. But whighs ' = yhehs' = w, so that h1gh2_1 € G, < H and
hence g € H. This is a contradiction, so w = Q. Now let g € G. Then w9 € w’, so there
exists h € H such that wh = w9. It follows that w9~ = w, so that gh~! € G, < H and
hence g € H. This implies that G C H, which shows that G, is maximal. O

Lemma 2.3.7. Let G be a cyclic group generated by z € G. Then Aut (G) is abelian.

2.3. IDENTIFYING Alt () OR Sym () 17

Proof. Let o, B € Aut (G). Then 2 = 2% and 2” = 27 for some 4,5 € Z. Also let g € G,
so that g = z* for some k € Z. It follows that g® = (mk)a = (z)F = (z’)k = (mk)l =g

Similarly, ¢® = ¢ for all g € G. Therefore ¢g*% = (gl)ﬂ =g =gt = (gj)a = ¢P* for
all g € G, which implies that a8 = fa. Hence Aut (G) is abelian. O

Lemma 2.3.8. Let G < Sym (Q2) and = € G. Also let N = N¢ (C) be the normaliser
of C := (x) in G. Then x commutes with every element of N’, the derived group of N.

Proof. For each n € N define the function 6,, : C — C by y» = n~lyn for all y € C.
These functions are well-defined since n='Cn = C for all n € N. In fact they are
automorphisms of C, for the same reason that g — n~!'gn is an automorphism of G.
Thus we can define a homomorphism ¢ : N — Aut (C) by n® = 6, for all n € N.
Lemma 2.3.7 implies that Aut (C') is abelian, so

[m,n]? = (771_17”L_117’Ln)q5 = (m_1)¢ (n_1)¢m¢n¢ = (m‘z’)il m? (nd’)il n® =1

for each m,n € N. This implies that N’ < Ker (¢). Now let g € N’. Then g® = 1 and

hence g lzg = 2% = 29° = 2. Thus rg = gx as required. O

We now prove our main result on primitive permutation groups. The following proof
is again taken from [2], except for the base case, which requires that we construct a
3-cycle rather than a 2-cycle. This error is identified in [4]. A correct, but less detailed,

proof appears in [5].

Theorem 2.3.9. Suppose that is finite, and let G < Sym (€2) be primitive. Further,
suppose that G contains a p-cycle z for some prime p < || — 3. Then Alt () < G.

Proof. By Theorem 2.3.1 and Corollary 2.3.2, we may assume p > 5. Let n = [Q)| — p,
so that n > 3. We shall proceed by induction on n, but defer the base case n = 3. So
assume that n > 4 and the result is true for || —p =n — 1. Then p < |Q] — 4, and every
subgroup of G that contains x and acts primitively on some A C Q, with |A| = |Q] — 1,
will also contain Alt (A). We proceed to find such a subgroup.

Let W = {A C Q| G|, acts primitively on A} be partially ordered by set inclusion.
By Lemma 2.3.3 supp () € W, since [supp (z)| = p < |2|. Hence there exists a maximal
A € W containing supp (), as 2 is finite.? Since A C Q and |A| > p > 2, this is not

2For a more detailed explanation, see footnote 1.

18 CHAPTER 2. IDENTIFYING PERMUTATION GROUPS

a block for G in Q. So by Lemma 2.2.6, there exists g € G such that A9\ A # & and
AIN A # &. Therefore A C A9 UA, and hence AU A ¢ W. But Lemma 2.3.4 implies
that A9 € W, so by Lemma 2.3.5 G|xq 5 acts primitively on A9 U A. It follows that
AYUA =Q, and

Q] = [ATUA| = [AY] +[A] = [ATNA] < 2|A],
since clearly |A9] = |A|. Now let w € Q\ A, and g € G,,. Then
Q] > |[ATUA| = |AY + |A]| = |AINA] =2|A| = |[AINA] > Q] — AN A,

and hence |[A9 N A| > 0. Moreover w ¢ A9 U A, since w? = w. Therefore AYU A C Q,
and hence Lemmas 2.3.4 and 2.3.5 imply that A9 U A € W. Since A is finite, and
maximal in W, it follows that AY = A. Therefore g € Ga, which shows that G, < GAa.
Also Ga < G as A is not a block for G in 2. Hence by Lemma 2.3.6, G,, = Ga for all
weN\A.

Let I' = 2\ A, and suppose for a contradiction that |I'| > 2. Then I' is not a block for
G in), so by Lemma 2.2.6 there exists g € G such that T9NT # @ and T9\ T # 2.
Choose 7y € Y NT and § € T'Y\ T, so that v = a9 and § = 49 for some «,5 € I.
Moreover § € A, since § ¢ I' = Q \ A. Since G|, acts transitively on A, there exists
h € G|, < G such that 6" # §. However 4" = 7, as v ¢ A and hence G|, < G,.
It follows that ghg~! € G fixes a but not 3, both of which lie in I' = Q \ A. This
contradicts G, = Ga = G, so |I'| < 2 and hence |I'| = 1.

It follows that |A| = || —1. Moreover € G|, , which acts primitively on A € W, since
supp (z) € A. Therefore Alt (A) < G|, , by the induction hypothesis. This implies that
G contains a 3-cycle, as [A| > p > 3 and G|, < G. By Theorem 2.3.1 it follows that
Alt (2) < G, which completes the inductive step.

For the base case |Q| = p+n = p+3, so [Sym ()] = |Q|! = (p + 3)! and hence p, which
is at least 5, does not divide % |Sym (2)|. Therefore 1 and p are the only powers of p
that divide |G|, as |G| divides [Sym (£2)|. It follows that C' = (z) is a Sylow p-subgroup
of G.

Now let N = Ng (C) be the normaliser of C' in G. If w € fix(z) and n € N, then
nan~! € C fixes w, so (w")® = W™ '™ = w" and hence w" € fix (). Therefore each
n € N fixes fix (z). Furthermore, for each distinct w,o € fix (x) there exists n € N

which fixes w but not o. To show this, suppose to the contrary that N, = (IV,,), for some

2.3. IDENTIFYING Alt () OR Sym () 19

distinct w, o € fix (x). Then C < (Gy), < G, since w,o € fix (y) for all y € C. This
implies that C' is a Sylow p-subgroup of both G, and (G.,), . Moreover, N, = (N,),
is the normaliser of C' in each of the stabilisers. Therefore |G, : N,| = |(Gu), : No| =
1 mod p, by Sylow’s Third Theorem, and since |G, : Ny| = |Gy, : (Gw),| |(Gw), @ Nol,
it follows that |G, : (Gu),| = 1 mod p. Now write I' = {7} . Then there exists g € G
such that 79 = w, as G is transitive. It follows that A9 = (Q\ {~+})? = Q\ {w}, so by
Lemma 2.3.4 Gy = Nseq\asGs = G|, acts primitively, thus transitively, on Q\ {w}.

The Orbit-Stabiliser Theorem implies the contradiction
Gt (Gu)yl = 09| = 12\ {w}| = [2] = 1 = p+2 # L mod p.

If we write fix (z) = {«, 8,7}, then there exist m,n € N such that m fixes «, but not
B, and n fixes 8, but not 4. Since fix ()™ = fix (x)" = fix (x), it follows that m swaps
B with v and n swaps v with a. Now let g = [m,n] € N’. Then

—-1,,—1 -1
g m n mn n mn mn n
ad =« =« =" =" =4,

IBg — ﬁm_ln_lmn — ,yn_lmn — amn — an =
79 — ,ymflnflmn — anlmn — 5mn — ,yn =

which implies that g contains (a 8 7). By Lemma 2.3.8 g = 27 iga? for all i € Z.
Write 2 = (wo w1 ... wp—1) for some wp,w1,...,wp—1 € Q. Then wf € supp (z), since
g~! € N fixes fix (z) . Therefore wi = w; for some i € N,, and hence

i gad j j
A =l i —) oty

for all j € N,. It follows that gP fixes each point of supp (z) = {wo,w1,...,wp—1}, SO
g? = (a B)P, which is either (a 8) or (a 8 7)* = (« v) because 3 t p. This implies
that g € N' < N < G is a 3-cycle, so by Theorem 2.3.1 Alt (Q2) < G. O

This theorem implies a similar result about transitive permutation groups, taken from

[1].

Corollary 2.3.10. Suppose that is finite, and let G < Sym (2) be transitive. If there
exists x € GG and a prime p with % |2 < p < || — 3 such that x contains a p-cycle, then
Alt (2) <G.

20 CHAPTER 2. IDENTIFYING PERMUTATION GROUPS

Proof. Let A C supp (z) be the support of the p-cycle in the cycle structure of . Then
AT = A and |A] = p, s0 (supp () \ A)" = supp (z) \ A and [supp () \ A| < 2] — p.
Therefore each w € supp (x) \ A will be fixed by z for some i € P with i < |Q] — p.
This implies that z(4=P)! € G is a p-cycle. It remains to show that G is primitive.
Suppose to the contrary that G is not primitive. Then there exists a non-trivial block
A for G in Q. This means that 2 < |A| < ||, and AY is either equal to or disjoint from
A for all g € G. As G is transitive, it follows that ¥ = {A9| g € G} is a partition of
Q into sets of size |A|. In particular, |A| < £ |Q|. For each g € G define the function
0y : 3 — X by I'% =T9 for all T € . Then each fy is a bijection, with inverse 6,-1.
Hence we can define a homomorphism ¢ : G — Sym (X) by ¢ = ty for all g € G.
Clearly

Ker(¢p)={geG|IY=TforallT € ¥} < (Sym(Q)| |T € X) ~ (5,)",

where m := || and n := |A|. By the First Isomorphism Theorem, |G| = |G?| [Ker (¢)|
divides m! x (n!)™. But 2 < n < (9|, so that m < 1|Q| and hence m,n < p.
This implies that p does not divide m! x (n!)™, so it cannot divide |G|, which is

a contradiction because z(2=P)! ¢ @ has order p. Therefore G is primitive, so by
Theorem 2.3.9 Alt () < G. O

2.4 An algorithm to identify Alt () or Sym (2)

The above results give some simple criteria which can be used to determine whether a
given permutation group is isomorphic to one of the symmetric or alternating groups.
They lead to a randomised Monte Carlo algorithm which can answer this question
efficiently. The following lemma can be used to find the probability that such an

algorithm will succeed.

Lemma 2.4.1. Suppose that 2 is finite, and let G < Sym (£2) with Alt (2) < G. Let
q € P and suppose that 3 |Q| < ¢ < [Q| — 2. Then % |G| elements of G contain a g-cycle.
If G = Sym (), then this also holds for ¢ € {||, |92 —1}.

Proof. There are ('2') choices for subsets of €2 with size ¢. Since ¢ > % ||, choosing a
different set here gives rise to a different permutation. Once one has been chosen, the

number of possible g-cycles to act on it is (¢ — 1)!. The remaining elements of 2 can be

2.4. AN ALGORITHM TO IDENTIFY Alt (2) OR Sym (2) 21

permuted amongst themselves in an arbitrary way, and the number of possible ways is
(19] = @)l If G = Sym (£2), this implies that the number of choices for x is

9 19— D19~ o) 1 i
(") ta-vr0) - g = BREZ R EE= B L5y @y = L.

Otherwise G = Alt (Q2), so only even permutations can be counted. However, the
number of sets of size ¢ and g-cycles on a given set remains the same. If ¢ is odd,
then the ¢-cycle contributes an even number of 2-cycles to z, so the number of possible
permutations of the remaining elements will be ‘A\Ql—q’ = % (I22] — q)!. Otherwise ¢
is even, so the g-cycle contributes an odd number of 2-cycles to z, and the number
of possible permutations of the remaining elements is |S|Q|,q \ A\QI*Q‘ =2 (|9 —q).

Therefore the number of choices for z is

9 1 Q- DRl -2 Lo
(") ta- g ol - g = BHLE SR Z0_FE 2 iaeai = Lo

Lemma 2.4.2. Given n € P, a group G < S,, and a constant € € (0,1), Algorithm 1
reports whether A, < G. The probability that it claims A,, £ G when A, < G is at

most €.

Proof. If G is not transitive, then A, £ G unless n = 2, by Lemma 2.2.5. Any
permutation group of degree 2 contains Ao = 1, so the algorithm is correct in this case.
Otherwise G is transitive, and by Corollary 2.3.10 it suffices to exhibit a p-cycle z € G
such that p is a prime between L%J + 1 and n —3. If A, £ G such a cycle will not
be found, so the algorithm will correctly report failure. Otherwise A4, < G, and by
Lemma 2.4.1 the proportion of such cycles in G is the sum p given on line 4. If there
are no such elements, then n <7 and a brute-force approach is efficient. Otherwise, the
probability that none of ¢ € P random elements of G have the required cycle length is
q=(1—-p)°. If ¢ >log;_, (¢) then ¢ < e. O

22 CHAPTER 2. IDENTIFYING PERMUTATION GROUPS

Algorithm 1 IsAlternatingOrSymmetric(G,¢).
1. if IsTransitive (G) then

2: n = Degree (G);
3: P := PrimesInInterval ([%J +1,n— 3) ;
4: p::SumE‘qEP};
5:
6: if p = 0 then
7: return |G| > %!;
8: end if;
9:
10: c:= [log,_, (e)];
11: R := RandomProcess (G) ;
12:
13: for i :=1 to cdo
14: g = Random (R);
15: s == CycleStructure (g) ;
16: if LongestCycleLength (s) € P then
17: return true;
18: end if;
19: end for;
20:
21 return false;
22: else
23: return n = 2;

24: end if;

Chapter 3

Constructive recognition of A,
and 5,

3.1 Motivation

The algorithm presented in the previous chapter only works for permutation representa-
tions of groups, using as it does the concepts of transitivity, primitivity and cycles. In
this section we take a more general approach, which only requires that we can compute
gh, ¢! and decide whether g = h, for elements ¢ and h of the input group G. These
so-called black-box groups include matrix groups and permutation groups. However,
they do not include finitely-presented groups, as the equality of two elements in such a
group is, in general, impossible to check. Nevertheless, we make use of finite presenta-
tions for the alternating group of degree n € P in order to establish an isomorphism
between A, and a subgroup of GG. Once this isomorphism has been constructed, it can
be computed in either direction. Most of the algorithms we present are described in
[6]; we have filled in the implementation details and made adjustments to ensure their

correctness, in particular for the cases 5 < n < 10, which are not covered in [6].

3.2 Presentations for the alternating groups

The following presentations for the alternating groups are due to Carmichael [7]. Their

proofs are omitted. The second is stated incorrectly in [6], but [8] is a reliable, and

23

24 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF A,, AND S,

accessible, source containing the original presentations.

Theorem 3.2.1. Let n € P with n > 4. If n is odd, then A,, has presentation
n—=< n—:< 2
<s, t ‘ 3,572 (st)", (155_1755)2 , (t5_2t52)2 e (ts_T%tsT%> > :

otherwise A,, has presentation

<s,t

These presentations are useful for our purposes since they completely describe the

_ 2
3 n—2 n—1 (,—1_—1,_)2 —2,.2\2 (71)72 —n=2, n=2
2, 8" %, (st) ,(t s ts) ,(ts ts) N $7 2 ts 2 i

alternating groups without reference to their permutation representations. We connect
these descriptions in the following way, in order to exploit the permutation structure in

a general context.

Definition 3.2.2. Let n € P with n > 4. If n is odd, the standard generators for A,
are (34 ... n)and (12 3). Otherwise, they are (12)(34 ... n)and (123).If G is
a group and s,t € G are such that there exists an isomorphism 6 : (s,t) — A, which
maps s and t to the respective standard generators for A,, then s and t are alternating

n-generators within G.

Lemma 3.2.3. Let G be a group and n € P with n > 5. If s,t € G satisfy the
presentation for A,, given in Theorem 3.2.1, and (s,t) # 1, then s and t are alternating

n-generators within G.

Proof. Let F be the free group on two generators y and z. Then F//N ~ A,, for some
N <Q F, and by von Dyck’s Theorem there exists a homomorphism ¢ : F/N — (s,t)
which maps Ny — s and Nz — t. Since A,, is simple (as n > 5), either Ker (¢) =1 or
Ker (¢) = A,. The latter is impossible because (s,t) # 1, and s,t € AS < (s,t), s0 ¢ is
an isomorphism.

Nowleta= (34 ... n)andb=(123). Then b>=a"2=1,andab= (12 ... n) so
(ab)" = 1. Moreover z~ bz = (1 2 3%) for all z € ((A,);), so ba *ba* = (1 3“k> (2 3)
has order 2 for all k € {1, 2,00, ”T_?’} . If n is odd, it follows that a and b satisfy the
presentation for A,, given in Theorem 3.2.1.

Otherwise, relabel a = (12)(34 ... n). Then b®> =a" 2 =1,and ab= (134 ... n)

so (ab)" ™! = 1. The remaining relations are satisfied by a and b, since the effect of (1 2)

3.2. PRESENTATIONS FOR THE ALTERNATING GROUPS 25

is to invert each b conjugated by odd powers of a, and this is cancelled by inverting the
leading b.

By another application of von Dyck’s theorem and the fact that A, is simple, there
exists an isomorphism ¢ : F'//N — (a,b) which maps Ny — a and Nz — b. It follows
that ¢!+ is an isomorphism which maps s — a and t — b. O

In order to make use of these presentations, we need algorithms to check whether they
are satisfied by a given pair of generators. It should be clear that the following two

algorithms fit this purpose.

Algorithm 2 CheckOddGenerators (n,s,t).
1 ift3#41o0r s 2#1or (st)" # 1 then

2 return false;

3: else

4 g1 =1

5 g2 =1

6:

7 fork:::lto”Tfi)’do
8 91 = g18;

9 g2 = gas

10:

11: if (9291)2 # 1 then
12: return false;
13: end if;

14: end for;

15:

16: return true;

17: end if;

Lemma 3.2.4. Let G be a group. Given odd n € P with n > 4 and s,t € G with
(s,t) # 1, Algorithm 2 determines whether s and ¢ are alternating n-generators within

G.

Proof. Follows from Lemma 3.2.3. O

26 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF A,, AND S,

Algorithm 3 CheckEvenGenerators (n, s,t).

1 ift#£1or s 241 or (st)" ' #1 then
return false;

. else

2

3

4

5

6: p=1;
7

8 fork*::lto”T_Qdo
9

g1 = g15;
10: g2 = g5~
11: pi=—p;
12:
13: if (tp92g1)2 # 1 then
14: return false;
15: end if;
16: end for;
17:
18: return true;

19: end if;

3.3. COMPUTING THE INVERSE IMAGE OF A PERMUTATION 27

Lemma 3.2.5. Let G be a group. Given even n € P with n > 4 and s,t € G with

(s,t) # 1, Algorithm 3 determines whether s and ¢ are alternating n-generators within

G.

Proof. Follows from Lemma 3.2.3. O

3.3 Computing the inverse image of a permutation

Given alternating n-generators s and ¢ within a black-box group G, we know there
exists an associated isomorphism 6 : (s,t) — A, but have no method of computing
it. However, we are able to write every permutation a € A,, as a word in s’ and ¢
involving only products and inverses. Since 6 is an isomorphism, and we can compute
products and inverses in GG, the corresponding word in s and ¢ evaluates to a®~". Before
describing this algorithm in detail, we present a simple variant which works for S5,
rather than A,. This is useful if G is isomorphic to S, and helps to illustrate the main

idea of the corresponding procedure for A,.

Definition 3.3.1. Let n € P with n > 3. The standard generators for Sy, are (12 ... n)
and (12). If G is a group and s,t € G are such that there exists an isomorphism
0 : (s,t) = S, with s = (12 ... n) and ¥ = (12), then s and t are symmetric

n-generators within G.

Lemma 3.3.2. Let G be a group. Given n € P with n > 3, symmetric n-generators
s’ and ¢ within G, and a € Sy, Algorithm 4 returns a ", where 0 : (s',t') = S, is the

isomorphism associated with s’ and ¢'.

Proof. Let X be the cycle structure of a. Define a relation < on X x X by z <X y if
and only if the least element of supp () is at most that of supp (y). Then = is a total
ordering on X, which may be listed in order as x1, z2, ..., 2y, where m == | X|. If z € X
then x = (i j1 j2 ... jx) for some k € P and ji1,j2,...Jk € Pp, where i is the least
element of supp (z), and hence z = (i 71) (¢ j2) ... (i ji). Thus we aim to express (i j)
as a word in s? and ¢?, for each pair i,j € P, with i < j.

The outer loop searches from 1 to n—1 for ¢ € supp (a) . This has the effect of traversing
the list x1,x9, ..., xy. It is not necessary to consider i = n, because either n € fix (a)

or n € supp (z) for some z € X, in which case there is a smaller number in supp (z) .

28 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF A,, AND S,

Algorithm 4 PermutationToElement (n,s',t',a).

g i= 1;
c s =8"t;

cte=t

J =1

1

2

3

4:

5. fori:=1ton—1do
6

7 k= 7j%

8

9

while j # k do

10: h = tskfifl;
11: g = gh;

12:

13: a=a(jk);
14: j=k;

15: k= j%

16: end while;

17:

18: t:= tsl;

19: s = st;

20: end for;

21:

22: return g;

>s=(23 ... n)
>t=(12)

>h=(ik)

3.3. COMPUTING THE INVERSE IMAGE OF A PERMUTATION 29

If supp (a) = @, then a7 = 1, and the algorithm returns g = 1. Otherwise it finds
the smallest ¢ € supp (x1), and the inner loop runs through successive images k of i
under z;. This loop attempts to construct h € G such that h? = (i k). Once found, g
is multiplied by h. At the end a is adjusted to fix j = k””l_l, and the cycle in a which
was (j k ...) becomes (k ...), or 1 if £t = 4. This ensures that the loop terminates
at the appropriate time and members of supp (z1) are not encountered again by the
outer loop. If k¥1 # i, the new cycle (k ...) maps k to the same point as x7. Once the
inner loop has finished ¢% = x1, and a = zox3. .. x,, fixes every point preceding i, so by
induction it remains to show that line 10 is correct.

We claim that, during each pass i € P,_; of the outer loop, s’ = ((i +1) (i +2) ... n)
and t® = (i (i+1))." Since s = s't’ and t = ¢’ initially, this is clear for the case
i = 1. Suppose it also holds for some i € Py_y. Then ¢! = (i (i+1)1 2" =
((i + 1) (i +2)) in pass i+1 of the outer loop, and hence s = ((i +1) (i 4+2) ... n)t? =
((z +2) (i+3) ... n). By induction, this proves the claim. Therefore (tskﬂ;l)e =

k i—1

(i+1)°) = (i k) for all i,k € P,, with i < k, so h is assigned to the correct
element of GG on line 10. O

Theorem 3.3.3. Let G be a group. Given n € P with n > 4, alternating n-generators
s and ¢ within G, and a € A,,, Algorithm 5 returns aeil, where 6 : (s,t) — A, is the

isomorphism associated with s and ¢.

Proof. Let X be the cycle structure of a, and list X in the order described in the proof
of Lemma 3.3.2 as x1, X2, ..., ZTm, where m = |X|. Again we decompose a as a product
of 2-cycles, but are no longer able to reconstruct an individual 2-cycle within G. By
Lemma 1.3.8 this decomposition has an even number of 2-cycles, so we may insert
((n—=1) n)(n (n—1)) between every second pair of 2-cycles. We now aim to express
(i j) ((n — 1) n), or its inverse, as a word in s’ and t? for all 4, j € P,, with i < j.

First, we comment on some differences from the approach taken by Algorithm 4. The
outer loop need not consider ¢ € {n —1,n} unless z,, = ((n —1) n), which only
contributes (n (n — 1)) z,, = 1 to a. Each time a 2-cycle from a is processed, the variable
p switches from 1 to 2 or vice-versa. This keeps track of whether the next 2-cycle y

from a should have ((n — 1) n) on its right or left, which dictates whether we aim to

IFor simplicity, we adopt the convention that (n) =1 in the expression for 0.

30 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF A,, AND S,

Algorithm 5 FvenPermutationToElement (n,s,t,a) .

1: g=1;

2: p:i=1;

3: ¢ =14 (nmod 2);

4:

5. fori:=1ton—2do

6 J =1

T k= j%

8

9 while j # k do

10: if : =n — 2 then
11: if k =n then

12: h = t?;

13: else

14: h = t37P;

15: end if;

16: else if kK <n — 2 then
17: hy = (tsnfifs)p;
18: hy == (h$)?;

19: h == hohiho;
20:
21: if k > i+ 1 then
22: c=t"7
23: if 1sOdd (k — i) then
24: h = hcq;
25: else
26: h = hCQ;
27: end if;
28: end if;
29: else
30: hy =t

31: ho = h{;

>t=((n—2) (n—1) n)

>t2=((n—1) (n—2) n)

n—i—3

>t = (i (i 1) (n— 1))
> (ts"*”)q: (i +1) in)

bl = (i k (i+1))

>ct=(ik (i+1))

>hy=((i+1) (n—1))
>hi=((i4+1) in)

3.3. COMPUTING THE INVERSE IMAGE OF A PERMUTATION

Algorithm 5 EvenPermutationToElement (n,s,t,a) (continued).

32: if K <n xor p # 1 then
33: h = hghl;
34: else

35: h = h2h3 Y
36: end if;

37 end if;

38:

39: g = gh;

40: pi=3—-p;

41:

42: a=a(jk);

43: 7 =k;

44: k= j%

45: end while;

46:

47: if ¢ # 1 then

48: t =t

49: s = st;

50: else

51: u = st;

52: t = t2;

53: u = tY;

54: s = stuz;

55: t = u;

56: end if;

57:

58: q=3—q;

59: end for;

60:

61: return g;

32 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF A,, AND S,

express y ((n — 1) n) or its inverse as a word in s and t’. The exponent p is only ever
used on 3-cycles, so the value 2 is equivalent to —1 (in tests, squaring a matrix was
faster than computing its inverse). A similar equivalence holds for the variable ¢, which
is 1 if and only if n — ¢ is odd.

We claim that, during each pass i € P,,_o of the outer loop, t = (i (i +1) (i +2))
and?

g J((@+2) (+3) ... n), if ¢ # 1,
(t (i+1)((i+2) (1+3) ... n), otherwise.

Since s and t are alternating n-generators, and ¢ initially describes whether n is odd or
even, this is clear for the case i = 1. Suppose it also holds for some i € P, _3. Further,
suppose that ¢ # 1 in pass i of the outer loop. Then ¢ = 1 in pass i + 1 of the outer

loop, and
0= (i (i+1) (i+2) D))@ D H2) = ((G41) (142) (i+3))
as required. Similarly
s =((i+2) (i+3) ...t =((i+1) (+2)((@+3) (i+4) ... n).
Otherwise ¢ = 1 in pass i of the outer loop, so ¢ # 1 in pass i + 1 and
= (1) i (i 4 2))0 CEDED) @3) (4D 2) (1 1) (142) (i+3)),
as required. Moreover

=0 ((+1)((+2) (+3) ... n)((i+1) i (i+2)(#)
((i+3) (i+4) ... n).

By induction, this proves the claim.

Now let i, k € P,, with ¢ < k. Suppose that i =n — 2, so that k € {n — 1,n}. If k = n,
then (i k) ((n —1) n) = ((n —2) (n— 1) n), which is equal to t? in pass i of the loop.
As a 3-cycle, raising this to the power of p will result in ((n — 1) n) (i k) if necessary.
Similarly, if K = n — 1 then (i1 k) (n—1)n) = ((n—2) n (n—1)) and we take the

opposite power.

2Again we adopt the convention that (n) =1 in the expressions for 0.

3.4. DETERMINING THE IMAGE A BLACK-BOX GROUP ELEMENT 33

a0
Otherwise, suppose that £ <n — 2. Then <t5" 3) =@ (i+1) (n—1)),sinceg=1

n—i—3)

only when n — ¢ — 3 is even and hence (s o always fixes ¢ and ¢ + 1. Conjugating

this 3-cycle by s and raising to the power ¢ gives ((i + 1) i n), and hence h? is either
((t+1)in)@ (i+1) (n—=1)((G+1) in)=(0G (i+1)((n—1) n)

or its inverse, depending on the value of p (since (hghihy)™ " = hy'h{thy'). To
reach (i k) ((n — 1) n) we conjugate this by (i k (i 4+ 1)), which is either (c?)? or (02)9
depending on whether k — ¢ is odd or even.

Lastly k € {n — 1,n}. As in the previous case, (hghl){9 =(in (n—1)). This is either

(i k) ((n— 1) n) or its inverse, depending on whether k is n — 1 or n. O

3.4 Determining the image a black-box group element

Computing the inverse image of a permutation is relatively straightforward because we
can use the structure of the input permutation to our advantage. This approach is not
available for the other direction, but we can build up knowledge about an element of a
black-box group by manipulating it within the group. In particular, by evaluating the
commutator of two elements we can determine whether the supports of their images
intersect. This is especially useful if one of their images is already known. With this
in mind, we describe algorithms which compute the inverse images of a variety of

permutations within a black-box group.

Definition 3.4.1. Let n,k € P with n > 4 and k < n — 2. If s,t are alternating
n-generators within some group G, with associated isomorphism 6 : (s,t) — A,, then
the initial k elements of (s,t) are t = (1 2 3)6}71 (12 4)071 yeos (12 (K4 2))971)

Lemma 3.4.2. Let n € P with n > 5. If z,y € A, are respectively a 3-cycle and a
5-cycle, then supp (z) Nsupp (y) = & if and only if [x,y] = 1. Hence, if G is a group
and g,h € G are such that there exists a monomorphism 0 : G — S,, under which ¢? is
a 3-cycle and hY is composed of disjoint 5-cycles, then supp (99) N supp (ho) = @ if and
only if [g, h] = 1.

Proof. If supp (z) Nsupp (y) = @, it is clear that xy = yx. Conversely, suppose that the
supports of x and y intersect at some ¢ € IP,,. Since |supp (y) \ supp (z)| > 2, we may
choose i with ¥ ¢ supp (z). Then %" = ¥ # i*¥ because i # %, so [z, y] # 1. O

34 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF A,, AND S,

Algorithm 6 DomainCover (n,s,t, F).

L k= |n/5];

2: m = |log, (k)| + 1;

3:

4: a = E\E3F;; >a=(123405)
a, ifm<j<2m)

5: X = jeL,....2m]|;
1, otherwise

7. a = E4E2E¢E2EsEY; >a= (6789 10)

8:

9: for i :=2 to k do

10: for j =1 to m do

11: if BitwiseAnd (i, 2m’j) # 0 then

12: Xj = Xa;

13: else

14: Xmtj = X ;

15: end if;

16: end for;

17:

18 a=a"; ba=((5i+1) (5i+2) (5i+3) (5i+4) (5i+5))

19: end for;

20:

21: return X;

3.4. DETERMINING THE IMAGE A BLACK-BOX GROUP ELEMENT 35

Lemma 3.4.3. Let G be a group and n € P with n > 10. Define k = [n/5] and for
each i € Py define x; = ((5i —4) (5¢ —3) (5i —2) (bi —1) (5i)) € A,. Let m be the
number of bits required to store k. Given n, alternating n-generators s and t within G,
and a list E of the initial 8 elements of (s, t), Algorithm 6 returns a list X containing
2m elements of (s,t). The cycle structure of the image of X; in A, is contained in
{x; | i € Py} for all j € Pyy,. If i € Py and j € Py, then the image of X; contains x; if
and only if the 7' most significant bit of i among the lowest m is 1, and the image of

Xj+m contains z; if and only if this bit is 0.

Proof. Clearly |logs (k)| +1 is the number of bits required to store k. Let 6 : (s,t) — A,

be the isomorphism associated with s and t. After line 4
o’ = (B1E3Es)" = (123)(142)(125)=(12345) =1,

and X9 is the only element of X among the first m which contains z;. Every time X is

modified, a cycle is added to exactly one of X; or X;,, for each j € P,;,. After line 7

a = (E4E§E6E$E8E§)9 =(126)(172)(128)(192)(1210)(162)
=(678910) = x9,
and following this, conjugating by s° maps a’ to the next member of {zi|i€Py}. The

if statement ensures that the correct relationship holds between the cycle structure of

the images of members of X and the binary expansion of elements of Py. O

Algorithm 7 ConjugateMap (s,t,i,7) .
1: if ¢+ < 3 then

2 if j < 3 then

3 return /7'

4: else

5 return t3_isj_3;
6 end if;

7: else

8: return sj_i;

9: end if;

36 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF A,, AND S,

Lemma 3.4.4. Let G be a group and n € P with n > 4. Given alternating n-generators
s and ¢ within G, and ¢, j € P, such that ¢ < j, Algorithm 7 returns ¢ € (s, t) such that

i’ = j, where 0 : (s,t) — A, is the isomorphism associated with s and t.

Proof. If i < j < 3 then either i = j or i = 1 and j = 2. In either case the image of #/~*
maps i — j. Otherwise j > 3. If i < 3 then the images of 3~ and s/~ respectively map
i +— 3 and 3 — j so their composition maps 7 — j. Otherwise 3 < i < j and (sj_i)e
maps ¢ —> J. [

Lemma 3.4.5. Let G be a group and n € P with n > 4. If G is isomorphic to
Sn, and s,t € G are alternating n-generators within G, with associated isomorphism

0 : (s,t) = Ay, there exists an isomorphism ' : G — S,, such that ge/ = ¢% for all
g€ (s1).

Proof. Let ¢ : G — S, be an isomorphism. Then 0~1¢ € Aut (4,), so if n # 6 there
exists ¢ € S, such that a® "¢ = a¢ for all a € A,. Define 0 : G — S,, by ¢° = cg®c™?
for all g € G. Then ¢’ is clearly an isomorphism, and for all g € (s,t)

/ —] 671@5 C
¢® = cgtcl = c(999 1) S C(ge) 1= c<ge) L= gf.

If n = 6, then some members of Aut (A,) do not correspond to inner automorphisms of
Sy. However, these so-called exceptional automorphisms are just restrictions of those
for Sg. Hence there exists ¢ € Aut (Sy,) such that [, = 9~1¢, and we may proceed as
above to show that 6 :== ¢¢p! is an isomorphism from G — S,, such that ¢ = ¢? for
all g € (s,1). O

Definition 3.4.6. Let n € N with n > 5, and [€ P,,. If P C IP,, contains [and |P| =5,
a 3-combination of points about | is a list consisting of all 3-element subsets of P,
with no duplicates. Let s,t be alternating n-generators within some group G, and let
0 : (s,t) — A, be the associated isomorphism. A 3-combination of cycles about l is a
list of elements of (s, t), each of which maps to a 3-cycle under 6, such that the list of

the supports of these 3-cycles is a 3-combination of points about ! (with no duplicates).

Example 3.4.7. Every list of the 3-element subsets of P5 is a 3-combination of points

about 1. A corresponding 3-combination of cycles about 1 in As is

(123),(124),(125),(134),(135),(145),(234),(235),(245),(345).

3.4. DETERMINING THE IMAGE A BLACK-BOX GROUP ELEMENT

37

Algorithm 8 ElementImage (n,s,t,E,X,S,T,l,q).

m = |X|/2;

2: 1:=0;

3:

4: for j =1 to m do

5 for k:=1 to |T| do

6 if [X;,T}] =1 then

7: b:=0;

8 kK = k;

9 break;

10: else if [Xy, T{] =1 then
11: b=1;

12: kK = k;

13: break;

14: end if;

15: end for;

16:

17: if [¢ Sy, then

18: for k=1 to |T| do

19: if Sy, \ Sy = {l} then
20: k' = k;
21: break;
22: end if;
23: end for;
24: if [Xjerm,T,f,,] # 1 then
25: b:=1-1b;
26: end if;
27: end if;
28:
29: 1:= 21+ b;

30: end for;

38 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF A,, AND S,

Algorithm 8 ElementImage (n,s,t,F, X,S,T,l,g) (continued).
31: J:==[n+1—(nmodb),...,n|;

32: if 0 < 7 and 57 < n then

33: J=[Bi+j|je[-4,...,0]]UJ;

34: end if;

35:

36: C := [Ey, E3E3, E3E5, E¢Fq7, E1Ey] ; > C; = (1 (2i) (2i+1))
37: 1 :=1;

38:

39: ¢ = ConjugateMap (s,t,1,1);

10: H=[C/? | kell,2];

41:

42: for j € J do

43: ¢ = ConjugateMap (s,t,i,7);

44: 1:=7;

45: for k=1 to |C| do
46: Cy = Cy;

47: end for;

48:

49: N =10,0];
50: for h € C do

51: for k:=1 to 2 do

52: if [h, Hk] =1 then
53: if N, > 1 then
54: continue j;
55: end if;

56: N == N+ 1;
57: end if;

58: end for;

59: end for;

60:

61: return j;

62: end for;

3.4. DETERMINING THE IMAGE A BLACK-BOX GROUP ELEMENT 39

Theorem 3.4.8. Let GG be a group isomorphic to either A, or .S, for some n € P with
n > 11. Given n, alternating n-generators s and ¢ within G, a list F of the initial 9
elements of (s,), the list X returned by Algorithm 6, a point [€ P, an element g € G
and 3-combinations S and T of points and cycles about [, Algorithm 8 returns the
image of [under ¢’, where # : G — S,, is the monomorphism determined by s and ¢
(via Lemma 3.4.5 if G ~ S,,).

Proof. The first stage of the algorithm narrows down the range in which 19° can lie to
at most 9 elements of P,, using the list X. Let £ = |n/5] and m be the number of
bits required to store k. By Lemma 3.4.3, m is initialised correctly on line 1. Suppose
there exists ¢ € Py such that 19° € {bi —4,5i —3,...,5i}. We claim that, by line 31,
the algorithm has computed this value of 4. Since ¢ < k has at most m non-zero bits,
it suffices to show that the number b produced in pass j of the loop is the j* most
significant bit of ¢ among the lowest m.

Let P C P, be the 5-element set associated with S. The supports of XJ@ and XJQ m
are disjoint, so one must contain less than 3 points of P’ := P9’ . Hence there exists a
3-element subset @ C P’ which is fixed pointwise by X]Q or Xf+m. Since Q(ggr1 is a
3-element subset of P, it is the support of T,f/ for some k' € Pyq. It follows that (T,g,)e
has support @, so it commutes with one of X](? or XJQ e
defined on line 17.

If | € Si = supp (T,f/) then 19" € supp ((Tkg,)e) . By Lemma 3.4.2, this implies that 19°

This ensures that k" is actually

lies outside the support of either XJQ or X¢ whichever one commutes with (T,f,)e .

)
Assuming that 19" <5 |n/5] , it follows bijemma 3.4.3 that b is defined correctly on
lines 7 and 11. Otherwise, we search for ¥” € Py such that | € S,» and the other
elements of Sy~ also lie in Sys. This exists because S is a 3-combination of points about
1. If T}, commutes with X4, (as Tj, did), then b is (correctly) defined in the same
way as it was for the case [€ Sy/. Otherwise, the failure of T ,f,, to commute with X,
implies that 19° lies in the support of X, so by Lemma 3.4.3 the value of b should
be (and is) reversed.

Therefore i is correctly computed provided that 19° < 5k. If this is not the case, then the
computed value of i may not make sense (in particular, it might be 0). This possibility is
excluded by the if statement on line 32, after which J is guaranteed to contain 19°. Next,
the algorithm computes the inverse images under 6 of (12 3), (142)(125)=(145),

40 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF A,, AND S,

(162)(127) = (167),(182)(129) = (189) and (1102)(1211) = (110 11).
The intersection of the supports of each pair of these cycles is {1} . By Lemma 3.4.4,
the supports of H{ = (1 2 3)(cg)9 and HY = (1 4 5)(09)9 intersect only at 19°. Moreover,
when the list is updated in pass j of the following loop, the supports of each pair of
cycles intersect only at j.

Finally, the algorithm tests every point j € J to check whether 19" = g If 19° = 7, then
H; and Hs each commute with at most one member of C, as this only occurs when the
supports of their images are equal. Conversely, suppose that each of H; and Hy commute
with at most one member of C. Then at least four members of C' do not commute with
H1, which is not possible unless j € supp (H f) , by the pigeonhole principle. A similar
argument implies that j € supp (Hg) , and hence j € supp (H 19) Nsupp (Hg) . Therefore
j= lge, which shows that the algorithm returns j if and only if j = 19°. O

Corollary 3.4.9. Let G be a group isomorphic to either A,, or S,, for some n € P with
n > 11. Given n, alternating n-generators s and ¢ within G, a list F of the initial 9
elements of (s,t), the list X returned by Algorithm 6, and g € G, Algorithm 9 returns

the list 199, 299, ey nge, where 6 : G — S, is the monomorphism determined by s and t.

Proof. Tt suffices to show that the I*® call to Algorithm 8 is passed a pair of 3-
combinations of points and cycles about [. The first pair calculated is for [= 3,
which is correct because the nested loops traverse each subset {i,j,k} C P5 exactly

once, and
(BEREE?) =(12 (+2) 21 (k+2) (12 (i+2)) (21 (j+2))
=((i+2) (j+2) (k+2)
for all 7,5,k € P5 with ¢ < j < k. For [= 1, the cycles computed map under 6 to

(123),(124),(125)
(142)(125)=(145),
(124)(152) =(

(132)(124)=(134),(132)(125)=(135),
(123)(142)=(234),(123)(152)=(235),
245),(124)(152)(123)(142)=(345).

This reproduces Example 3.4.7. When [= 2 each point is increased by one, since

(123)(152)=(235),(124)(162)=(246),(125)(162)=(256),

3.4. DETERMINING THE IMAGE A BLACK-BOX GROUP ELEMENT 41

Algorithm 9 ElementToPermutation (n,s,t,E, X, g).

L S:=[];

2 T =[];

3:

4: for i:=1to 5 do

5: for j:=7+1 to 5do

6: for k=741 to 5do

7: h = E;E{E;E}; >h=((i+2) (j+2) (k+2))
8: Append (S, {i + 2,5 + 2,k + 2});
9: Append (T, h) ;

10: end for;

11: end for;

12: end for;

13:

14: T':= [Ey, By, B3, E{F>, E{E3, E3E3, E\E3, E\E3, B2 E3, T 5
15 8 =[{j—-2|jeJ}|JeS];

16: L := [ElementImage (n,s,t, £, X, 58" T' 1, 9)];

17:

18: T':= [E\E3, E\E3, E\E}, By B3, By Ef EsEY, Tv, Ty, Ty, T7 | ;
19: 8 =[{j—-1|jeJ}|JeS];

20: Append (L, ElementImage (n,s,t, B, X,S,T",2,9));

21:

22: for [:= 3 to n do

23: Append (L, ElementImage (n,s,t, E, X,S,T,1,9));

24: if | =2 mod 5 then

25: m :=min{n —1,5};

26: for i :=1 to |T| do

27: Si={j+m|jeSi};
28: T; = Tism;

29: end for;

30: end if;

31: end for;

32:

33: return L;

42 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF A,, AND S,

and the other cycles have been calculated earlier. For larger values of [we increase each
number in the point sets by 5 when needed, and conjugate the cycles by (55)9 , which
has the same effect on their supports. A smaller number is used if they would end up
outside P,,.]

3.5 Permutation groups of small degree

The algorithms of the previous section are closely based on those found in [6]. They
only work for permutation groups of degree at least 11 (although the authors incorrectly
claim that they are valid for degrees between 7 and 10). Indeed, the second part of
Algorithm 8 constructs five 3-cycles whose supports intersect pairwise at a single point.
We replace this part with a method which works for groups of smaller degree. However,
it is not as efficient, so the original algorithm should still be used if the given degree is
at least 11. This efficiency loss is mitigated for groups of small degree because the first
part of Algorithm 8 is no longer necessary.

The new algorithm is similar, in that it evaluates commutators to extract information
about the supports of permutations. Since groups of small degree (particularly As)
contain relatively few 3-cycles which commute with each other, it helps to have additional

information about the supports of those with a non-trivial commutator.

Lemma 3.5.1. Let n € P with n > 3, and z,y € S, be 3-cycles. If [z,y] = 1
then supp (x) and supp (y) are either disjoint or equal. Otherwise, if [x,y]2 = 1 then

supp (x)Nsupp (y) intersect at exactly 2 points. If [, y]2 # 1 then |supp (z) Nsupp (y)| =
1.

Proof. If x and y are disjoint, then they clearly commute. Suppose that supp (z) =
supp (y) , and write = (i j k) for some 4, j,k € P,. Then y € {(i j k), (i k j)}, so
[z,y] = 1. Otherwise supp (x) and supp (y) intersect in at most 2 points. Suppose there
exist distinct i, 7 € supp (z) Nsupp (y) . Without loss of generality write x = (i j k) for
some k € P,,. Then y = (i j 1) or y = (i [j) for some | € P, with [# k. In the first case

[,y = (i kj) (L)@ jk) (1) =1(ij)(k]),
and in the second

[yl =@ k)@@ k) @Lg) =13 k).

3.5. PERMUTATION GROUPS OF SMALL DEGREE 43

Therefore [z, y]2 =1, but [z, y] # 1. Otherwise there is a unique i € supp (x) Nsupp (y) .
Write x = (i j k) and y = (¢ [m) for some j, k,l,m € P, with {j, k}N{l,m} = &. Then

[z,y] = (i kj)(@ml)(@jk)@lm)=(lj),

so [z,y] # 1 # [z, y]>. This completes the proof, as every case has been considered. [

Theorem 3.5.2. Let GG be a group isomorphic to either A, or .S, for some n € P with
n > 5. Given n, alternating n-generators s and ¢t within G, a list E of the initial 3
elements of (s,t), and g € G, Algorithm 10 returns 1967 296, e ,nge, where 6 : G — S,

is the monomorphism determined by s and t.

Proof. As shown in Corollary 3.4.9, the list T reproduces Example 3.4.7. For reference,
(123),(124),(125),(134),(135),(145),(234),(235),(245),(345),

are the respective images of each member of T' under 6. Therefore, in pass [of the
outer loop, H f and H2'9 are 3-cycles whose supports intersect only at {. In pass j of the
next loop ¢ maps 1 — j, by Lemma 3.4.4. So 19° € supp (h?) and j € supp (hg) at
line 21. At this point, we aim to determine whether j € supp (h?) . If this holds for
all hy € {H{,Hj}, then 19° = j, since the supports of HY and HY intersect only at I.
Otherwise, it is clear that 19° # 3.

Clearly j € supp (h{) whenever hy € {hy,h3}. If hf commutes with h}, but is not
equal to hg or its inverse (h%)e, then by Lemma 3.5.1 j ¢ supp (h?) . In this case the
algorithm moves on to test the next value of j. Otherwise, Lemma 3.5.1 is applied to
determine the size Sy of supp (h(f) M supp (hg) , where hy =T%, _, is one of 1T or T§.
If 1 = 53 = 2, then j € supp (h?) , since the supports of (Tf)e and (Tg)e each contain
two points apart from j, all four of which will lie in supp (h(f) unless j € supp (h?) .
Suppose that S = Sy = 1. If j € supp (h?) , then j is the only point at which supp (h?)
intersects the support of (Tlg)e for each k € {2,3,4,5}. Therefore none of Ty, T¥, Tf
or T commute with h;. Conversely, if j ¢ supp (hff) , then one other point from the
supports of each of (Tf)9 and (Tg)e lies outside supp (R{) , and together these form
the support of (TIS)Q for some k € {2,3,4,5}. This permutation will commute with h¢,
and the algorithm will move on once it is found. Otherwise S; # S, so S = 2 and
S3_k = 1 for some k € {1,2}. Let t; = Ts_4 an t3 = T53_j)—4. Then m is defined so

44 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF A,, AND S,

Algorithm 10 ElementToSmallDegree Permutation (n, s, t, E,g) .

1. T := [E\, Es, B3, BBy, EXE3, E3E3, B\ E3, B\ E2, By E2, By E2E) B3 ;

2:

3 L=[];

4: H = [Th, Tg]; > H=1[123),(1405)]
5:

6: for [=1 to n do

7 for j:=1 to n do

8: if j =1 then

9: c=1;

10: else

11: h == ConjugateMap (s,t,j5 —1,7);
12: c = ch;

13: end if;

14:

15: for i:=1 to |H| do

16: hy = Hig;

17: S = [1,1];

18:

19: for k=1 to |S| do

20: he =15, _,;

21:

22: if hoh1 =1 or h%hl =1 then
23: continue 1;

24: else if [h;, ho] = 1 then

25: continue j;

26: else if [hy, ho]® = 1 then

27: Sy = 2;

28: end if;

29: end for;

3.5. PERMUTATION GROUPS OF SMALL DEGREE 45

Algorithm 10 ElementToSmall Degree Permutation (n,s,t, E, g) (continued).
30: if 51 = 53 then

31: if S1 =1 then

32: for £ :=2 to 5 do

33: if [h,T¢] = 1 then

34: continue j;

35: end if;

36: end for;

37: end if;

38: else
6, if 57 > Sy

39: m = ;
8, otherwise

40: for £ :=1 to 2 do

41: if [hl,T%+k] =1 then

42: continue j;

43: end if;

44: end for;

45: end if;

46: end for;

47:

48: Append (L, j) ;

49: break;

50: end for;

51:

52: ¢ = ConjugateMap (s,t,1,1 +1);
53: for i :=1 to |H| do

54: H; = Hf;
55: end for;

56: end for;

57:

58: return L;

46 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF A,, AND S,

that (- H)e and (- +2)9 fix j and have supports which consist of two points from
supp (t?) and one from supp (tg) . To check this, see Example 3.4.7. If j € supp (h?) ,
then exactly one of these points lies in supp (h{) , and neither T¢_; nor T, , commute
with hj. Otherwise j ¢ supp (h(f) , and hence the support of either (T,fﬁl)e or (Tﬁwz)e
is exactly supp (h?) . One of these permutations will commute with h?, and the algorithm
will continue when it is found.

If the end of the loop over i is reached, then one of the above conditions has ensured
that j € supp (h?) for hy = H{ and h; = Hj, and hence 19° = j. This information is
added to the list L, which is returned once complete. O

3.6 Finding alternating generators

The algorithms of the previous two sections can be used to answer questions about
a black-box group G isomorphic to A, or S,, for some given degree n € P. In order
to apply them, we need alternating n-generators within GG. The following algorithms
are a significant step towards a general method for constructing them. However, they
only work when provided with certain cycles as input. These algorithms are described
in [6], but required some adjustments. In particular, lines 9-16 of Algorithm 11 are

modifications that ensure it works correctly.

Lemma 3.6.1. Let G be a group isomorphic to A,, or S, for some even n € P with

n > 6. Given n, a process R for generating random elements of G and a,b € G

which map under some monomorphism 6 : G — S,, to an (n — 1)-cycle and a 3-cycle

respectively, Algorithm 11 returns alternating n-generators within G with probability
3\2n/3

at least 1 — (1 — 7) .

n

Proof. Let | be the unique fixed point of a’. We aim to find ¢ € G such that ¢ is a
3-cycle with [€ supp (09) . Since n > 5, it suffices to search among conjugates of b in G.
Indeed, if = € S, is 3-cycle then z¥ = b? for some y € S,,. If y ¢ A,,, choose a 2-cycle
z € S, disjoint from z, so that ¥ = b’ and zy € A,,. So the total number of conjugates

cof bis 2(2), and there are 2(";1) with [€ supp (ce) . The corresponding proportion is

2("y) _(n=1)(n-2) 3! 3
2(3) 2! nin—1)(n—-2) n’

3.6. FINDING ALTERNATING GENERATORS

47

Algorithm 11 FindEvenGenerators (R,n,a,b).

1. for r:=1 to [2n/3] do

9 c = bRandom(R);

3

4 if [¢*,] # 1 then

5: ¢ = caQ;

6: if [/,c] #1 and [(c’)‘22 ,c} # 1 then
7 t:=[c%¢];

8

9 if > = 1 then

10: d:=c";

11: if [d,d"]*> = 1 then

12: return ac, c;

13: else if n > 8 or ((ac)”_3 # 1 and (acz)n_3 # 1) then
14: return acg, c?;

15: end if;

16: elseif n > 9 or ((at)3 #1 and (at)"™® # 1) then
17: return at,t;

18: end if;

19: end if;

20: end if;

21: end for;

22:

23: return 1,1;

48 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF A,, AND S,

If g,h € G then b9 = b" if and only if g and h are in the same coset of the centraliser
Cgq (b) of b in G. Each of these cosets has the same size, so finding a random conjugate
of b is equivalent to taking a random element g € G and evaluating 9. Therefore the
probability that the algorithm will fail to find a 3-cycle ¢ € G with [€ supp (09) is at

most (1 — %)211/3.

If such a ¢ € G is found, it does not commute with c%, ¢ and @', Indeed, [is fixed

0 22 and z*, but the other points of supp (09) are not (since x has length at

2

by x :==a
least 5). Moreover, these points do not map to each other under z, z* or z? (since
has odd length).

Write ¢ = (1 j), so that [¢®, ¢’ = (1 5% i®) (1 j i) (1 i j%) (L j). If i* # j and j* # i
then [c?, c]2 # 1, by Lemma 3.5.1. In this case, the algorithm returns at and ¢, where
t :== [c* c] maps under 0 to (I i i*). Without loss of generality write [= 1, i = 2
and z = (23 ... n), so that ! = (12 3) and (at)’ = (12) (34 ... n), which are the
standard generators for A,. In particular at has order n — 2, so the additional checks
when n < 9 have no effect.

9 = (14 i%), so ac and ¢

Otherwise i* = j or j* =1, so [ca,c]2 = 1. In the first case ¢
are alternating n-generators within G. Moreover, d’ = (I i zx)(l e) = (zx 1 ix2> and
hence the supports of d and (d*)’ = (2'9”2 i* i“’”S) intersect at 2 points. Therefore [d, d*|
has order 2, and the algorithm returns the correct elements. Otherwise (02)9 =(ljj%,
so it is correct to return ac® and ¢2. In this case d? = (I j® j)<l 7 jz) = (jx2 [j) , SO
(da)e = (jxg l jx> and [d, d*] has order 3. Since ac? and ¢? are alternating n-generators,
(ac)nf?’ #1# (acQ)n_3 . In particular, the additional checks when n < 8 have no effect.

This shows that the correct elements are returned whenever [€ supp (09) .

Conversely, let ¢ € G be a 3-cycle with [¢ supp (09) such that [c¢%, ¢] # 1. Then the
supports of ¢ and (ca’)e intersect in at most 2 points. If they intersect at exactly 2 points,
then [¢?, 0]2 =1 and supp (0‘9) = {i,ix,i“Q} for some i € supp (z) (since = has length
at least 5). Without loss of generality write i = 2 and z = (23 ... n), so that ¢’ is
(234)or (24 3).Ifn > 8 then ¢ commutes with ca4, whose image has support {6, 7,8} .
Otherwise, suppose that ¢ = (23 4). Then d’ = (2 3 4)(3 49) = (245), so (d)? =
(3 5 6) and [d, d?] has order 3. Moreover (acQ)e =(23...n)(243)=(45 ... n) has
order n—3. Similarly, if ¢ = (24 3) then d? = (24 3)®°% = (23 5),50 (d)? = (34 6)

3.6. FINDING ALTERNATING GENERATORS 49

and [d, d] has order 3. The above calculation shows that (ac)’ = (4 5 ... n) has order
n — 3. In every case the algorithm will move on to test the next random conjugate of b.
Otherwise the supports of ¢ and (¢*)? intersect at exactly one point, and hence [¢%, ¢]? #
1. If ¢ does not commute with ¢@” then supp (09) is either {i, i, iws} or {i, imz, imB} for
some i € supp (z) . Without loss of generality write i =2 and z = (23 ... n), so that
supp (69) is either {2,3,5} or {2,4,5}. If n > 9 it follows that ¢ commutes with @t

Otherwise, we claim that at has order 3 or n — 3, where ¢ := [c?, | . Indeed, ¢ is one of

[(235)°,(235)]=(364)(253)(346)(235)=(354),
[(253)°,(253)]=(346)(235)(364)(253)=(2623),
[(245)°,(245)]=(365)(254)(356)(245)=(265),
[(254)",(254)]=(356)(245)(365)(254)=(354),

and hence (at)? is one of

(23 ...n)(354)=(256 ... n),
(23 ...1)(263)=(345)(67 ... n),
(23 ...n)(265)=(234)(67 ... n),

where (6 7 ... n) denotes 1 if n = 6. Since n € {6,8}, the orders of these are n — 3 or

3. So in every case the algorithm will move on to test the next random conjugate of
b. O

Lemma 3.6.2. Let G be a group isomorphic to either A, or S,, for some odd n € P
with n > 5. Given n, a process R for generating random elements of G and a,b € G
which map under some monomorphism 6 : G — S, to an n-cycle and a 3-cycle

respectively, Algorithm 12 returns alternating n-generators within G with probability
n+t3

6 3
at least 1 — (1 — T+3)

Proof. We aim to find ¢ € G such that ¢ is a 3-cycle with support intersecting
supp ((ca)9> . As argued in Lemma 3.6.1, it suffices to search the 2(3) conjugates of b
for such a cycle. If 2 = a?, there are no 3-cycles y € S,, such that supp (y) = supp (y*).
The number with |supp (y) Nsupp (y*)| = 2 is 2n, since there are n choices for the point
i € supp (y) outside the intersection, and 2 choices for a cycle with support {i, ", iig} .

50

CHAPTER 3. CONSTRUCTIVE RECOGNITION OF A,, AND S,

Algorithm 12 FindOddGenerators (R,n,a,b) .

1: for r =0 to [n/3] do

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

2
3
4
5
6:
7
8
9

c = bRandom(R);
if [c, "] # 1 then
d = > 1,2 € supp (c)
if (c¢*)? = 1 then
d:=c"; > supp (¢) = {1, 2,3}
2 2 2
if [d,da] —1or <n:5 and [d,da] ” 1> then
return ac?, ¢; >c=(123)
else
return ac, c?; >e=(132)
end if;
else
d=c";
if [d,d*] =1 or ([c, CC/:| # 1 and [d, daﬂ #1 and [d,d"]* # 1) then
t:= [CQ,CCL]; >1¢=2
else
t:= [c, (c“)z] ; >2¢=1
end if;
return at?, t;
end if;
end if;

end for;

28: return 1, 1;

3.6. FINDING ALTERNATING GENERATORS 51

Moreover, the number with |supp (y) Nsupp (y*)| = 1 is 2n (n — 4), since there are n

choices for the point of intersection i, and n — 4 choices for j € P, \ {ifQ,ifl,i, zx}

such that supp (y) = {i,j,ifl})
Therefore the number of conjugates of ¢ of b such that ¢ is a 3-cycle with support

intersecting supp ((ca)e) is 2n (n — 3), and the corresponding proportion is

2n(n—3):nn_3 3! _ 6(n—3) 6
oy Y

nn—1)n-2) (m-1)Mn-2)" n+3
So the probability that the algorithm will fail to find such a 3-cycle is at most

142
6 3
(1 _ m) .

If such a cycle c is found, it will not commute with ¢%, since the supports of their images

intersect, but cannot be equal. Hence there exists ¢ € supp (09) such that ¥ € supp (09)
and ¥ ¢ supp (ce) . Without loss of generality write i = 1 and x = (12 ... n), so
that supp (09) ={1,2,;} for some j € P,,_;. If j = 3, then (cca)g is one of

(123)(234)=(13)(24) or (132)(243)=(12)(34).
and has order 2. Otherwise (cc®)? is one of

(125)(235°)=003;%2j) or 215)@B25°)=017j"32),

and has order 5. Hence the algorithm distinguishes these cases correctly.

Suppose that ¢ = (123). Then d° = (123)®°% = (1 25), which provided n > 7
commutes with (d“z)e =(347).If n =5 then (d“Q)e = (342) and [d, d‘ﬂ has
order 3, by Lemma 3.5.1. In either case, the algorithm returns alternating n-generators

because
=(123) and (a02)9:(12 ..n)(132)=(34 ... n).

Conversely, suppose that ¢ = (13 2). Then d’ = (13 2)(3 45) = (14 2) does not
0
commute with (daQ) = (36 4), provided n # 5. Otherwise the latter is (3 1 4), and

[d, d“ﬂ = 1. The algorithm returns alternating n-generators for the same reason as
above.

It remains to consider the case 4 < j < n — 1. Suppose that ¢ = (1 2 j). Then (02)9 =
(214) and (¢*)? = (23 5%), so [, ¢] (125)(325%(2145)(2335%) =(123).

52 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF A,, AND S,

Therefore ¢ should be assigned to this commutator. Moreover d? = (1 2 j)(2 8% =
(1337),soif [d,d*] # 1 then j = 4 (since 5 < j* < n). In this case [d,d*] has order
3, because d? = (1 3 4) and (d*)? = (2 4 5) . Furthermore [d, d“z} #1# [c, CC/} , since
0

(da2> is either (35 6) or (35 1) and (¢)? is either (3 4 6) or (3 4 1), depending on
whether n = 5. This shows that ¢ is assigned correctly whenever ¢/ = (1 2 7).

Conversely, suppose that ¢ = (21 j). Then (62)0 = (12 7), so t should be assigned
to [c, (ca)ﬂ . Moreover d’ = (21 /)®279) = (j% 1 j), which implies that (d*)? =
(jm2 2 jx) . Therefore [d,d] # 1. It remains to show that one of the other expressions
on line 17 is trivial. To this end, suppose that [c, ccl} # 1. Then j =4 or jgc2 =1, since
() = (4 3 jm2> . In the first case d’ = (1 4 5), so provided that n > 7 the image of
d* under 6 is (3 6 7). This implies that [d, d“z} = 1. If n = 5, then (d*)? = (1 25)
and hence [d, d®] has order 2. In the second case j =n —1,s0d’ = (n 1 (n—1)) and
(d*)? = (1 2 n) . Therefore [d, d®] has order 2. It follows that one of the expressions on

line 17 is trivial, and ¢ is assigned correctly. O

3.7 Finding input cycles

The algorithms of the previous section reduce the problem of finding alternating genera-
tors to that of constructing cycles with certain lengths. In order to accomplish this, we
search among random elements which give 1 when raised to a certain power. Several
preliminary results are required before we can determine the probability that such an

algorithm will succeed.

Definition 3.7.1. If n € P, then d (n) is the number of divisors of n, and D (n) is the

sum of these divisors.
The first section of the following proof was inspired by [9].
Lemma 3.7.2. If n € P, then d (n) < 24{/n/315.

Proof. Let p{*p3?...po" be a prime factorisation of n, with a; € P for all ¢ € P,.. Then

r

d(n):H(ai—&-l),

i=1

3.7. FINDING INPUT CYCLES 93

since each divisor of n is of the form p[flpg2 .. .p,@r for some (31, Bo,..., 5, € N with
Bi < «ay for all i € P,.. It follows that
d(n) ﬁ a;+1
= . (3.1)

3 i/3
vn i=1 pq/

2

Now let i € P,., and suppose that p; > 8. Since «; > 1 and % <log(2),

log(a.+1)—/ai+ldt—/2dt+/ai+ldt</2dt_|_/ai+ldt
' 1 3 1t 2 t)1t 2 2

i+1—2
% <log (2) (14 a; — 1) = log (2) a;

Q; Qa; (&7 a;
= 3log (2) 5~ = log (8) 7 < log (pi) 5~ = log (pi /3> :

= log (2) +

Therefore a; + 1 < p?i/g, SO % < 1. Otherwise p; < 8. Define a function f; : R - R
p; "

by
x+1

7

for all x € R. For each x € R, it follows from the quotient rule that

dx+1 pf/?’— z+1 pf/glog ;i) /3 1
flay=detl p Z@EUD s/ 1 (et 1)10s ().
b; b; 3pi
Let z; = 3/log(p;) — 1. Then f/(z) > 0 for all x € (—o0,z;) and f/(z) < 0 for
all x € (z4,00). By the Mean Value Theorem, f;|, is maximised at |z;] or [z;]. In

particular f; (o;) < M;, where M; := max {f; (|x:]), fi ([zi])} is given below.

pi | L@ | fi ((2a]) | [2i] | fi ([zi]) | M;
2| 3 2 4 % 2

5/ 0 1 1 3%5 3%5
710 1 1 % %ﬁ

To summarise, if p; > 8 then the i*" term of (3.1) is at most 1; otherwise it is at most

M;. Since each prime appears at most once in (3.1),

<2X — X — X — =

L I SR R /- R SR /5

)

Therefore d (n) < 24{/n/315. O

d(n)iﬁai—l—l 3 2 2 24

54 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF A,, AND S,

Lemma 3.7.3. If n € P, then D (n) < (4 +log (n))n/2.
Proof. Let A={i € P, |idividesn}, Ay ={ic Ali<ntandAy={ic A|i>/n}.
Then i < N :=[{/n] — 1 for all i € Ay, so

Sy = N+ (V=D [Val <\/ﬁ(\/25+1)_n+2\/ﬁ§

2 - 2 -

Moreover, n/i € P and n/i < y/n, so that n/i < [\/n], for all i € Aj. It follows that
[fJ

Vnl
ioat LVa] gt
ZZ_Zn/z —nZ/ <n+n;/i_1t:n+n/1 7

i€Ag i€Ao

:n—&—nlog(t\/ﬁJ) <n+nlog (ni) :n+§log(n) :g(2+log(n)).

Therefore D (n) < n+ (2 +log(n))n/2 = (4+ log(n))n/2. O

Lemma 3.7.4. Let n,p € P such that p is prime, p?> < n and each prime factor of n is
larger than p. Then d (np) < 48{/n/315. Also let I' = {i € P, | ¢ divides np} . Then

S A2 (os() ~2hg () (142),,

(3.2)
el

Proof. Each divisor of np is either k or kp for some k € P with k | n. Since p { n, these

two cases never coincide. By Lemma 3.7.2, it follows that d (np) = 2d (n) < 48%/n/315.

Furthermore, since np is the only divisor of np which lies outside P,

> i=D(n)+D(n)p—np=D(n)(1+p)—np.

el
Nowlet A={i P, |idividesn}, Ay ={ic A|li<nlandAy={ie A|i>/n}.
Then) ;cn, @ <n, and n/i < [/n] for all i € Ay, as shown in Lemma 3.7.3. Moreover,
n/i>p+1forall i € Ay \ {n} , since each prime factor of n is at least p + 1. Therefore

Zi:zn/z n—f—z —n—i—nZ/ <n+nL§J/iilit

1€A2 1€AS —p+1 i=p+1 i=p+1“""

Lv7) n
:n+n/ %szrn(log(L\/ﬁJ)—log(p)) 5 (2+log (n) —2log (p)).

It follows that D (n) < (4 + log (n) — 2log (p)) n/2, and hence (3.2) holds. O

3.7. FINDING INPUT CYCLES 95

Lemma 3.7.5. Let k,m,n € Pand A = {i € P, | ¢ divides mn}. If £ > 1, then

PEARL (1+k;1>

1EA

Proof. Suppose that k > 1. If i € A, then ¢ < n and hence mn/i > m. It follows that

Sy () <3 () ey 3 [

1EA 1EA i=m+1
mn i
dt dt
Snk+mknk Z / kgnk—i—mknk/ t—k
i=m—+1 i—1 m
=nF + mFn® [lim !
t=oo th=1 (1 — k) mk-1(1—-k)
k., k
k mn k m
= = 1+ —
Ry ey <+k—1>

O

Lemma 3.7.6. Let k,n € P, m € N, and A = {i € P,, | i divides k (n —m)} . Suppose
that n — m > km. Then M := maxA =n — m.

Proof. Suppose that M # n —m. Then M > n —m since n — m € A. Now suppose
that ¢ .= ged (M, n —m) > m. Then

n—m n—m n—m
c=n—m<M<n= c+m<<+1>c
c c c

which is a contradiction because there is no integer between “—* and “—™ + 1, but ¢
divides M. Therefore ¢ < m, so m # 0 and hence

M (n—m) _ Mkm

k(n—m)>lem (M,n—m)= > > (n—m)k.
c m
This is clearly a contradiction, so M =n — m.]
Lemma 3.7.7. Let n € P and k € P, \ {1}. Then there are k(), cycles of length k

inS,.fmePand 2 <n-—m <n-—k then there are m permutations in S,
composed of (disjoint) cycles of length k and n — m. The same holds for A,, provided
that k — 1 (respectively n —m + k) is even.

56 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF A,, AND S,

Proof. Let k € P, \ {1} . There are () choices for the support of a k-cycle, and (k — 1)!

cycles with a given support. Hence there are

K _nl(k-1! n!
<"/‘> kD=0 (n—k)! k(n—k) (3.3)

cycles of length k in S,,. Now let m € P, and suppose that k¥ < n —m. Given a k-cycle
x € Sp, the number of cycles of length n —m in S,, which fix supp (x) is the same as

the number of cycles of length n — m in S,,_x, which is % according to (3.3).

Therefore
n! (n—k)! B n!

E(n—k)!'(n—m)(m—£k)! k(n—m)(m—Ek)!

is the number of permutations in \S;, composed of cycles of length k and n—m. A k-cycle

has parity (kK — 1) mod 2, and an element composed of cycles of length k& and n — m has
parity (k+n —m — 2) mod 2. These are 0 if and only if k£ — 1 (respectively k + n — m)

is even. O

Theorem 3.7.8. Let m € N. For every ¢ € (0,00) there exists N € P such that, for all

m!(n—m)

n € P with n > N, the number of permutations g € .S,, such that g =1 is less

than (n — 1) (1+¢).

Proof. Let € € (0,00) , and assume ¢ < 3 without loss of generality. Also let k, N € P be

3 A\t
such that & > 942 and N > max { (@) kK (1 - (3—;35) k_1> ,Vadml, (m! 4+ 1) m} .

€
Let n € P with n > N > k > 3. Consider g € S,, with gm!(”_m) =1, and let X be the
cycle structure of g. Then P := {supp (z) NPy | x € X} \{@}U{{o} |0 € fix(g) NP}
is a partition of P into non-empty sets. Let s = |P|, and write P = {P, P, ..., P} .
For each i € Py there exists a; € P such that either a; > 2 and P; = supp (z;) NPy for
some cycle x; € X of length a;, or a; = |P;| =1 and P; C fix (g) . Therefore g is among
the

a1,a2,...,4s : : n_k_zi';l (CL—’PD
Mg = n=>a '] ((a.J_ ‘1p.‘] ’) (ai — 1)! (3.4)
j=1 i=1 ¢ !

elements of 5, with the above property. More precisely, M;i:apzl‘_'_iflljs counts those
h € S, such that, for every ¢ € Py, if a; > 2 then h contains an a;-cycle x; such that
P; = supp (x;) NPk, and otherwise (when a; = |P;| = 1) P; C fix(h). To check this,

3.7. FINDING INPUT CYCLES o7

compare the product terms in (3.4) with the first term in (3.3). If i € Py and a; > 2,
then the number of choices for supp (z;) is restricted by the fact that all k elements of
P, are unavailable, so we need only choose a; — |P;| of the remaining n — k elements.
However, Z;;ll (a; — |P;j|) of these elements have been assigned to the preceding cycles.
If a; = 1, then a; — | P;| = 0 and the i*" product term in (3.4) is just 1, as required. The
first term in (3.4) is the number of permutations of the remaining points of P,,. Note
that

s\ g [(RS e~ IBD) e - 1!

a1,02,...,0s __ .
Mpgrs == '] , ; ,
=) i \(a— 1RD (n— k= Xy (a5~ [P])!

noSw) (n— k)! S (g — 1)
;” (n—k—z;?:l(aj—\m))!g<az‘—!Pz'!>!

=(n-— k)'H m <(n-— k)!HaLPi\—l.
i=1 " e i=1

Define A = {i € P,, | i divides m! (n —m)} . Since supp (gm!(”_m)) = supp (1) = @, the
length of each x € X divides m! (n — m). Therefore ay, aq,...,as € A, and the number

of possibilities for g € S, with g™~ =1 is less than
S
M= (n—k) a7, (3.5)
i=1

where the sum is over all s € Py, partitions { Py, Py, ..., Ps} of Py and ay,as,...,as € A.
By Lemma 3.7.6 A C P,,_,,, so by Lemma 3.7.5 the contribution made to (3.5) by {Px}

18

(n— B> 7 < (n— k) (n —m)* <1+ k”ﬁg) < (n—k)Inh! (1 + k"j;) .

IEA
Let P be another partition of Py, and write P = { Py, Py, ..., Ps} where s := |P| € Py \
{1}. By Lemma 3.7.2 |A| < d (m! (n — m)) < 243/ml(n — m) /315 < (44m! (n —m))3 ,

so the number of sequences aj,as,...,as € A is at most (44m! (n — m))g . For such a

sequence

S S nk
P;|—1 | s | — —
Hal; ZI S Hnlpz‘ 1 :nz'z‘:l(lpl‘ 1) :nk & = —.
=1 i=1

nS

58 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF A,, AND S,

Since n? > 44m!, the contribution made to (3.5) by P is at most (n — k)! times

cnk (4d4min\ 3 44m!\ §
(44m!(n —m))s — < < n;n) n* < < gn > nF < 13mlink3.
n n n

wlen
‘ 3

As Py, is finite, there exists a function f : P — Py such that f (P) € P for all P € P.
If i € Py then there is a unique P; € P such that i € P;, so i — f(P;) is a well-
defined mapping of P. to itself. Define a relation ~ on Py x P, by ¢ ~ j if and only
if f(P;) = f(P;). This clearly an equivalence relation and P is the corresponding set
of equivalence classes. Every function mapping Py to itself determines (in this way) a
unique partition of P, so the number of partitions of P, is at most k¥, the number of
functions mapping Py, to itself. It follows that

|
M < (n—Fk)! (nkl (1 + k"_L2> + 13kkm!nk§)

k—1 |
< (n—1)! (n f k) (1 + % + 13kkm!n—§> ,

where the second inequality follows from the fact that

k-1

(n—k)n* = (n -)] — <(n—1)!k1:[1 n :(n—l)!< n)H.
n—1i izln—k n—k

i=1

By the definitions of & and N

m)! +13kkm!< m)! +13k:km!5_§+§_§
k-2 5 T 0o o WMl 6 6 3
k-1
and likewise (ﬁ) <1+ % because
1
n 1 1 34+¢e\k1 E\ T

n—k 1_5—1 . A= <3> (+3

()

Therefore

M<(n—1)!<1+§> (1+§):(n—1)! (1+235+§z> <n—1)1(1+e).

3.7. FINDING INPUT CYCLES 29

This result effectively states that, for sufficiently large degrees, there is an arbitrarily
high probability that a permutation which is 1 when raised to a certain power has a
certain cycle structure. The following corollary formalises this idea. Unfortunately, the
degrees required by this result are too high to be of practical use. However, the idea

behind the proof can be used to obtain a reasonable bound for most degrees.

Corollary 3.7.9. Let m € N. For all ¢ € (0,00) there exists N € P such that, for all
n € P with n > N and 5§ > m, the proportion of permutations g € S,, that contain a

I(n—m)

cycle of length n — m, among those for which g™ =1, is greater than 1 — .

Proof. Let € € (0,00), and take N from Theorem 3.7.8. Also let n € P with n > N and

m!(n—m)

5 > m. Then the number of permutations g € S, such that g =1 is less than

(n—1)!(1+4¢). By Lemma 2.4.1, the number that contain a cycle of length n —m is

n!
n—m

length at most m, and hence g

. Let g € S, be such a permutation. Then the other cycles contained in g each have
ml(n—m) — 1 Therefore the proportion of such elements

among those g € S, with ¢"'("=") =1 is greater than

(nn!_/f';!(_lnl)g) :nfm (1—1;;) >1(1_§):1_5_

O]

Corollary 3.7.10. Let k,m € P be such that 2 < k < m. For all € € (0, c0) there exists

N € P such that, for all n € P with n > N and § > m, the proportion of permutations

g € S, that are composed of (disjoint) cycles of length k£ and n — m, among those for
g

which ¢*("=™) =1, is greater than lm;,

Proof. Let ¢ € (0,00), and take N from Theorem 3.7.8. Also let n € P with n > N
and 5 > m. Then the number of permutations g € S, such that g™ = 1 s less
than (n — 1! (1 +¢). If g € S, and ¢*"™ = 1, then ¢™ ™™ = 1 since k < m. So
the number of such elements in S, is also less than (n — 1)! (1 4 ¢). By Lemma 3.7.7,
the number of permutations g € .S, that are composed of cycles of length £ and n —m

(n—m)

is WM, and all of these clearly satisfy g" = 1. Therefore the proportion of

such elements among those ¢ € S,, with ¢g*("—™)

nl/k(n—m)(m—-k)! n € 1 1—c¢
n—1)!'(1+e) (n—m) (1_1+8>k(m—k)!> m!

=1 is greater than

60 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF A,, AND S,

We now give more practical bounds for these proportions, by using ideas from the proof
of Theorem 3.7.8. Our results are not valid for small degrees, so we first describe an

algorithm which can be used to calculate these exactly.

Algorithm 13 NumberO f Permutations (n,p) .

L C=[1,1];

2:

3: for m =2 to n do

4: N =1;

5: s:=1;

6:

7 for [=2 to m do

8: s=s(m—-10142);

9:

10: if [| p then

11: Cc:=S;

12: fori=1tom—-[0+1do
13: ¢ = ity
14: N =N+ cCp_i_j19;
15: end for;

16: end if;

17: end for;

18:

19: Append(C, N);

20: end for;

21:

22: return C)41;

Lemma 3.7.11. Given n,p € P, Algorithm 13 returns the number of permutations

g € Sy, which satisfy g = 1.

Proof. The algorithm constructs a list C' such that, for each m € P,, C,,+1 is the
number of permutations g € S, which satisfy ¢g? = 1. Pass m of the outer loop aims to

calculate C, 1. Every permutation in .S, is composed of disjoint cycles, which can be

3.7. FINDING INPUT CYCLES 61

ordered as described in Lemma 3.3.2. The outer loop initially sets N to 1, to count the
identity permutation. It then adds to this, for each [€ P,,, the number of permutations
g € Sy, which satisfy g = 1 and start with a cycle of length [. If [= 1 or [does
not divide p there are no permutations with these properties. Otherwise, the number
depends on the least element ¢ € P, of the first cycle. This is clearly less than m —1[. The
variable s is continually updated to hold (m#lj-l)!’ and similarly ¢ = % holds
the number of sequences of length [— 1 in P,,_;. Equivalently, c is the number of cycles
of x € Sy, of length [such that i is the least element of supp (z) . Every permutation
g € Sp, which satisfies g = 1 and starts with such a cycle z consists of x composed

with a permutation h € Sm|{i i1) such that h? = 1. Conversely, every such

.;m}\supp(x
composition gives a permutation g € S, which satisfies g = 1 and starts with .
Since |{i,7+1,...,m} \ supp ()| = m —i — 1+ 1, the count N is updated correctly on

line 14. O

Lemma 3.7.12. Let n € P and m € Ny be such that n > 5 and n — m is odd. The
proportion of cycles of length n — m among permutations g € S, for which g"~™ =1 is

2
at least £

Proof. Define A = {i € P,, | ¢ divides n —m}. Using (3.5) for the special case k = 3,

the number of permutations g € .S,, with ¢"~" = 1 is less than

M = Z (n— 3)!ﬁaLP"|71,
=1

where the sum is over all s € Pg, partitions { P}, Py, ..., Ps} of P3 and aj,aq,...,as € A.
If s = 3 then there is only one partition of P3 of size s, namely {{1},{2},{3}}. The
number of sequences a1, a2,as € A is at most 44 (n —m) < 44n, by Lemma 3.7.2. So
the contribution made to M by this partition is at most 44 (n — 3)!n, since the product
terms are all raised to the power of 0. Each of the three partitions of size 2 contributes
at most

(n—=3)!D(n—m)d(n—m) < (n— 3)!41—1-1(;2;(71)”% < o3 (n—3)!'(4+log(n))

to M, by Lemmas 3.7.2 and 3.7.3. The remaining partition {3} contributes less than

1

(n —3)In? (1 + 2_1> = 2n% (n — 3)!

62 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF A,, AND S,

to M, by Lemma 3.7.5. It follows that
M < (n—3)! (44n +6n3 (4+1log (n)) + 2n2))
Define a function f : (2,00) — R by

_ 44x + 623 (4 + log (z)) + 222
fe) = CEDICED)

for all x € (2,00). It can be shown, via the Mean Value Theorem, that f is decreasing

on [5000, c0) . Hence by Lemma 3.7.7, if n > 5000 the proportion of cycles of length

n — m among permutations g € S,, for which ¢"~™ =1 is at least

\V)

n! n! n
M(n—m)ml = (=1 (n) (n—m) = £ (5000) (n —m)

An exact calculation of this proportion using Algorithm 13 shows that for 5 < n < 5000

the minimum occurs when n = 9. This proportion, namely %, is larger than % O

> £(5000)" > =,

ot

Lemma 3.7.13. Let n € P and m € P, be such that n > 5 and 3 < m < 6 as small
as possible such that n — m is not divisible by 2 or 3. The proportion of permutations
g € S, that are composed of (disjoint) cycles of length 3 and n — m, among those for
which ¢3(=™) =1, is at least ﬁ.
Proof. First, suppose that n > 24. Define A = {i € P,, | i divides 3 (n —m)}. Using

(3.5) for the special case k = 3, the number of permutations g € S,, with ¢3"~™) =1 is

M = Z (n—3)! ﬁaipjl*l,
=1

where the sum is over all s € Pg, partitions { P}, Py, ..., Ps} of P3 and aj,aq,...,as € A.

less than

If s = 3 then there is only one partition of P3 of size s, namely {{1},{2},{3}}. Since

n — m is not divisible by 2 or 3, the number of sequences a1, a2,a3 € A is at most

352 (n —m) < 352n, by Lemma 3.7.4. So the contribution made to M by this partition

is at most 352 (n — 3)In. Asn —m >n — 6 > 18, Lemma 3.7.6 implies that A C P,,_,.

Hence by Lemma 3.7.4, the three partitions of size 2 contribute at most

!4 + 6+ 4 (log (n —m) — 2log (3))
2

3d(n—m)(n—3)) i<3V352n(n—3)

[ISYAN

(n —m)

< V/9504n (n — 3)! (5 — 4log (3) + 2log (n)) n
< 22n3 (n—3)!(1+2log(n))

3.7. FINDING INPUT CYCLES 63

to M. The remaining partition {3} contributes less than
2 3 2
(n—3)!(n—m) 1+ﬁ < 4n* (n — 3)!
to M, by Lemmas 3.7.6 and 3.7.5. It follows that
M < (n—3)! (352n +22n5 (14 2log (n)) + 4n2> :

Define a function f : (2,00) — R by

3522 + 2223 (1 + 2log (x)) + 422

/(@) z—1)(z—2)

for all z € (2,00) . It can be shown, via the Mean Value Theorem, that f is decreasing on
[5000, 00) . Hence by Lemma 3.7.7, if n > 5000 the proportion of permutations g € S,,
that are composed of cycles of length 3 and n — m, among those for which ¢~ =1,

is at least

n! n! f(5000)71 1
3SM(n—m)(m-3)! 3mn-1f () (n—m3 18 100

An exact calculation of this proportion using Algorithm 13 shows that for 5 < n < 5000
the minimum occurs when n = 31. This proportion, namely

891228765715570221907968
6021030439189582986154675

is larger than WIO' O
Lemma 3.7.14. Let G be a group isomorphic to A, or S, for some n € P with n > 5.
Given n and a process R for generating random elements of G, Algorithm 14 returns

alternating n-generators within G with probability at least ﬁ.

Proof. 1t is clear that £ and m are initialised to satisfy the requirements for m in
Lemmas 3.7.12 and 3.7.13 respectively. By Lemma 3.7.7, the proportion of cycles of
length n—k in S, thus A,, is at least % In particular, the proportion of elements g € G
which satisfy ¢" % =1 is at least % It follows that the probability that the algorithm
fails to find such an element is at most (1 — %)% . Similarly, the proportion of elements

3(n—m) — 1 ig at least —-, and the probability that the algorithm

g € G which satisfy g T8

64 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF A,, AND S,

Algorithm 14 FindAltGenerators (R,n) .

: k:=1—(nmod 2);

m = n mod 6;

if m <1 then
m:=m + b;

else if m < 3 then
m:=m+1;

else

m:==m — 1;

end if;

— = =
M» 22

:aZ:1;

_
w

cci=1;

._.
w

: for r:=1 to 2n do
g = Random (R);
if ¢" % =1 then
a = g;
break;
end if;

: end for;

NN N = = e e
MY X 33>

: for r :=1 to 36n do
g = Random (R);
if ¢g3("=™) = 1 then
c=g;
break;
end if;

: end for;

NN N NN NN
© ® 3 S s ®

3.7. FINDING INPUT CYCLES 65

Algorithm 14 FindAltGenerators (R,n) (continued).
30: b=y

31:

32: if IsOdd (n) then

33: s,t == FindOddGenerators (R,n,a,b);

34: if CheckOddGenerators (n,s,t) then

35: return s, ¢;

36: end if;

37: else
38: s,t .= FindEvenGenerators (R,n,a,b) ;
39: if CheckEvenGenerators (n, s,t) then

40: return s, ¢;
41: end if;

42: end if;

43:

44: return 1,1;

fails to find such an element is at most (— ﬁ)%n

bounded above by e2 < %, so the chance that both succeed is at least (2)2 . When this
occurs, the probability that a is a cycle of length n — k is at least % by Lemma 3.7.12.

. Both of these probabilities are

Moreover, Lemma 3.7.13 implies that the probability that ¢ is composed of cycles of
length 3 and n — m is at least ﬁ. When these conditions all hold, the chance that the
appropriate choice of Algorithm 11 or 12 succeeds is at least 1 —e™2 > g. Therefore,

the probability that the algorithm succeeds is at least (%)3 % > ﬁ.]

Theorem 3.7.15. Given a finitely-generated group G, a constant ¢ € (0,1), and n € N
with n > 11, Algorithm 15 determines whether G ~ A,, or G ~ S,, with probability
at least 1 — . If it determines that G ~ A,,, via some isomorphism 6 : G — A,,, the
algorithm returns functions to compute § and #~'. Likewise, if the algorithm finds that

G ~ S, via some isomorphism 6 : G — S,,, it returns functions to compute § and =1,

Proof. Suppose that G is isomorphic to A,, or S,,. The probability that none of ¢ € P

calls to Algorithm 14 succeed is (%)C , which is less than € provided that logse (¢) < c.
400

66 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF A,, AND S,

Algorithm 15 Constructive Recognition (G,n,¢) .

1. s =1;

2: t=1;

3:

4: R := RandomProcess (G);

5 ¢= [Iog% (5)-‘ ;

6:

7: while s=1or t=1do

8: s,t == FindAltGenerators (R,n);

9: ci=c—1;

10: if ¢ <0 then

11: return false;

12: end if;

13: end while

14:
t, if j=0

15: E = 2—(n mod 2) jelo,....8]|;
(E;) , otherwise

16: X = DomainCover (n,s,t,E);

17:

18: o := false;
19: for g € Generators (G) do
20: b = Sym (n)!ElementToPermutation (n,s,t,E, X, g);

21: on failure: return false;

22:

23: if not 0 and IsOdd (b) then

24: o = true;

25: c=(12)b;

26: h == EvenPermutationToElement(n, s,t,c);
27:

28: t' = hg™;

29: 5 — (t/)(nJrl) mod 2 st:

30: end if;

3.7. FINDING INPUT CYCLES 67

Algorithm 15 Constructive Recognition (G,n,e) (continued).

31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:

if o then
h := PermutationToElement(n,s',t',b);
else

h := EvenPermutationToElement(n, s,t,b);

end if;

if h # g then
return false;
end if;

end for;

if o then
0 : g — Sym (n)!ElementToPermutation (n,s,t, E, X, g);
¢ : b — PermutationToFElement(n,s',t',b);
return true, o, 0, ¢;

else
0 : g — Alt(n)!ElementToPermutation (n,s,t, E, X, q);
¢ : b— EvenPermutationToElement(n, s, t,b);
return true, o, 0, ¢;

end if;

68 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF A,, AND S,

If one does, it returns alternating n-generators s and ¢t within G, which induce a
monomorphism 6 : G — S,,. It is easy to check that the list E gives the initial 9 elements
of (s,t). The next step constructs ¢g° for each generator ¢ € G, and if one of these
permutations is odd the algorithm computes symmetric n-generators s’ and ¢’ within
G. When this occurs G ~ S,,, and the correct algorithms to compute § and ~! are
returned. Otherwise G < (s,t), so G ~ A, and the corresponding algorithms are
returned correctly.

Conversely, if G is not isomorphic to A, or S, then the algorithm cannot possibly
succeed, since the test on line 37 requires that each generator of G lies in (s,t) or (s',)

for some alternating (symmetric) n-generators s and ¢ (s’ and ¢') within G. O

Algorithm 15 only works for degrees at least 11, but it is easily modified to account for
those between 5 and 10, by replacing calls to Algorithm 9 with calls to Algorithm 10,

removing the call to Algorithm 6, and only computing the initial 3 elements of (s, t) .

3.8 Performance

The algorithms we have described have the same asymptotic performance as the corre-
sponding ones described in [6]. However, their actual running time can vary substantially
depending on the care taken to implement them. We have prepared an implementation
for the Magma computer algebra system [10]. This implementation, available at [11],
works for groups of degree at least 5. The algorithms employed are essentially the
same as those described in this chapter, but have been optimised substantially (trading
readability for speed). Moreover, the implementation of Algorithm 15 produces two
additional functions. The first of these takes an element of the black-box group G and
returns it as a word in the generators of GG; the second takes a word in the generators of
G and returns the corresponding element.

We have compared the performance of our implementation with that of the built-in
Magma function RecogniseAlternatingOrSymmetric [12, p. 1818]. Our implementa-
tions of Algorithms 15 and 9 tend to be faster than their built-in equivalents, although
Algorithms 4 and 5 seem to take slightly longer to complete. The latter algorithms are
much faster than the others, so their performance is not as important. Our implemen-

tation of Algorithm 9 does less than the built-in equivalent, which is able to test for

3.8. PERFORMANCE 69

membership in the black-box group G. However, extending it would only require one
call to Algorithm 4 or 5, and one equality test within G, the running times of which are
far smaller than that of Algorithm 9 itself.

Listed below are the average running times (in seconds) we obtained by running each
algorithm three times on a variety of input groups, and randomly generated elements of
these groups. The same random elements were used as input to each implementation
of Algorithm 9, although different elements were used for each of the three repeated
tests; the resulting permutations were passed back to the appropriate implementation
of Algorithm 4 or 5. This process was automated, and the program we used to perform
it can be found at [13]. We used Magma version 2.18-8 on a computer with an AMD
Opteron 880 processor clocked at 2.4 GHz.

Algorithm Built-in equivalent

Input group Parent 15 9 4/5 15 9 4/5
A1g0 S100 0.10 | 0.04 | 0.01| 0.80 | 0.21 |0.00
Aot S101 0.08 | 0.04 |0.01| 0.82 | 0.22 | 0.00
S100 S100 0.10 | 0.04 | 0.00| 0.81 | 0.21 |0.01
S1o1 S1o01 0.08 | 0.04 | 0.00| 0.83 | 0.22 |0.00
A100 GL(99,3) | 1.52 | 0.52 |0.06 | 2.83 | 0.81 |0.03
Aqo1 GL (100,3) | 1.56 | 0.51 | 0.07 | 2.70 | 0.91 |0.03
S100 GL (99, 3) 253 | 0.51 |0.04| 5.60 | 0.80 | 0.02
S101 GL (100,3) | 2.17 | 0.51 | 0.03 | 2.74 | 0.88 |0.04
A1go GL (99,37) | 75.26 | 47.78 | 2.64 | 104.47 | 48.18 | 1.38
Ao GL (100,37) | 50.65 | 33.00 | 1.33 | 65.46 | 34.14 | 0.93
S100 GL (99,37) | 79.34 | 47.49 | 1.15 | 110.62 | 48.23 | 1.52
S1o01 GL (100,37) | 80.65 | 37.96 | 0.99 | 90.14 | 41.85 | 1.23

70

CHAPTER 3. CONSTRUCTIVE RECOGNITION OF A,, AND S,

References

Seress A. Permutation group algorithms. Cambridge: Cambridge University Press;
2003.

Dixon JD, Mortimer B. Permutation groups. New York: Springer-Verlag; 1996.

Jordan C. Théorémes sur les groupes primitifs. Journal de Mathématiques Pures
et Appliquées 1871; 16: 383-408.

Dixon JD. Errata for Dizon and Mortimer “PERMUTATION GROUPS”.
http://people.math.carleton.ca/~jdixon/Errata.pdf
(accessed 28 September 2012).

Wielandt H. Finite permutation groups. New York-London: Academic Press; 1964.

Beals R, Leedham-Green CR, Niemeyer AC, Praeger CR, Seress A. A black-
box group algorithm for recognizing finite symmetric and alternating groups, 1.
Transactions of the American Mathematical Society 2003; 355(5): 2097-2113.

Carmichael RD. Abstract definitions of the symmetric and alternating groups
and certain other permutation groups. Quarterly Journal of Pure and Applied
Mathematics 1922; 49: 226-283.

Coxeter HSM, Moser WOJ. Generators and relations for discrete groups. Berlin-
Gottingen-Heidelberg: Springer-Verlag; 1957.

Tao T. The divisor bound.
http://terrytao.wordpress.com/2008/09/23/the-divisor-bound/
(accessed 4 October 2012).

71

http://people.math.carleton.ca/~jdixon/Errata.pdf
http://terrytao.wordpress.com/2008/09/23/the-divisor-bound/

72

[10]

[11]

[12]

[13]

REFERENCES

Bosma W, Cannon J, Playoust C. The MAGMA algebra system. I. The user language.
Journal of Symbolic Computation 1997; 24: 235-265.

http://www.math.auckland.ac.nz/~obrien/cr.m

Bosma W, Cannon J, Fieker C, Steel A (eds.). Handbook of Magma functions,
Edition 2.18. Sydney; 2011.

http://www.math.auckland.ac.nz/~obrien/test.m

http://www.math.auckland.ac.nz/~obrien/cr.m
http://www.math.auckland.ac.nz/~obrien/test.m

	Abstract
	Introduction
	Motivation
	Permutation groups
	Examples of permutation groups

	Identifying permutation groups
	Motivation
	Primitive permutation groups
	Identifying `3́9`42`"̇613A``45`47`"603AAlt() or `3́9`42`"̇613A``45`47`"603ASym()
	An algorithm to identify `3́9`42`"̇613A``45`47`"603AAlt() or `3́9`42`"̇613A``45`47`"603ASym()

	Constructive recognition of An and Sn
	Motivation
	Presentations for the alternating groups
	Computing the inverse image of a permutation
	Determining the image a black-box group element
	Permutation groups of small degree
	Finding alternating generators
	Finding input cycles
	Performance

	References

