
Algorithms for Permutation Groups

Jonathan Conder
Department of Mathematics
The University of Auckland

Supervisor: Eamonn O’Brien

A dissertation submitted in partial fulfillment of the requirements for the degree of
BSc(Hons) in Mathematics, The University of Auckland, 2012.

Abstract

We present two randomised algorithms to recognise the alternating or symmetric groups
of a given degree. The first takes as input a permutation group G acting on some finite
set Ω and determines whether Alt (Ω) ≤ G. The second takes a black-box group G

and an integer n ≥ 5, and reports whether G ' An or G ' Sn. If an isomorphism is
found, the second algorithm returns functions which can be used to compute it in either
direction.
We discuss important concepts from the theory of permutation groups, and prove several
related results. To estimate probabilities for the success of each algorithm, we also
present several results which are statistical in nature.

1

2

Contents

Abstract 1

1 Introduction 5
1.1 Motivation . 5
1.2 Permutation groups . 6
1.3 Examples of permutation groups . 7

2 Identifying permutation groups 11
2.1 Motivation . 11
2.2 Primitive permutation groups . 11
2.3 Identifying Alt (Ω) or Sym (Ω) . 13
2.4 An algorithm to identify Alt (Ω) or Sym (Ω) 20

3 Constructive recognition of An and Sn 23
3.1 Motivation . 23
3.2 Presentations for the alternating groups 23
3.3 Computing the inverse image of a permutation 27
3.4 Determining the image a black-box group element 33
3.5 Permutation groups of small degree . 42
3.6 Finding alternating generators . 46
3.7 Finding input cycles . 52
3.8 Performance . 68

References 71

3

4 CONTENTS

Chapter 1

Introduction

1.1 Motivation

A central tool in computational group theory is the Schreier-Sims algorithm for com-
puting a strong generating set for a permutation group G [1, Chapter 4]. It takes as
input a base for G, that is, a list of points in the permutation domain such that no
element of G except the identity fixes them all. Among other applications, the resulting
information can be used to compute the order of G, and it simplifies the task of deciding
whether a given permutation is a member of G [1, p. 79]. This approach is particularly
efficient if G has a small base relative to its degree. Many interesting groups have this
property [1, p. 59], but there are important exceptions, such as the alternating and
symmetric groups. Indeed, a base for the symmetric group can exclude only one point
of the permutation domain; bases for the alternating group can omit at most two. As
such, the Schreier-Sims algorithm performs badly for these groups. However, if G is
known to be one of these groups, it is trivial to compute |G| or determine whether some
permutation lies in G. So it would be useful if we could identify these groups and handle
them separately.
We present randomised algorithms to determine whether a given finite group is isomor-
phic to the symmetric or alternating group of a given degree. The first only answers
this question for permutation representations of the given degree; the second works
for every representation in which products, inverses and equality can be computed. In
addition, the second algorithm produces an isomorphism between the input group and

5

6 CHAPTER 1. INTRODUCTION

the corresponding permutation group, and these isomorphisms are constructive and
realised efficiently.

1.2 Permutation groups

We use N to denote the natural numbers, including 0, and P for the positive integers.
For each n ∈ P we write Nn for the set {0, 1, . . . , n− 1} , and Pn for {1, 2, . . . , n} .

Definition 1.2.1. If Ω 6= ∅, then Sym (Ω) = {f : Ω → Ω | f is bijective} forms a group
under the operation ◦ (function composition). It is the symmetric group on Ω. The
symmetric group of degree n, written Sn, is Sym (Pn) .

In what follows we assume that Ω is an arbitrary non-empty set. The symbol ◦ will
usually be omitted, and functions will act from the right rather than the left. For
example, given ω ∈ Ω and g, h ∈ Sym (Ω) we write ωgh = (ωg)h to represent the
application of g, followed by h, to ω. We use ∆g to denote the image of some ∆ ⊆ Ω

under g. The notation
∏n

i=1 gi = g1g2 . . . gn represents the product of several elements
g1, g2, . . . , gn ∈ Sym (Ω) . We adopt the convention that

∏0
i=1 gi = 1, where 1 = 1Ω is

the identity function. In other contexts 1 may also represent the trivial group {1Ω} .

Definition 1.2.2. A subgroup of a symmetric group is a permutation group.

Theorem 1.2.3 (Cayley). Every group is isomorphic to some permutation group.

Proof. Let G be a group. For each g ∈ G define the function θg : G→ G by hθg = hg

for all h ∈ G. It follows from the existence of g−1 that θg is a bijection, and hence
θg ∈ Sym (G) . Now define the function φ : G→ Sym (G) by gφ = θg for all g ∈ G. It is
straightforward to check that φ is a group homomorphism. Indeed, θg ◦ θh = θgh for all
g, h ∈ G. This implies that Gφ ≤ Sym (G) is a permutation group. It remains to show
that G ' Gφ, which is straightforward because φ is an isomorphism from G → Gφ.

Indeed, φ is onto its image Gφ, and is injective because if θg = θh for some g, h ∈ G

then g = 1θg = 1θh = h.

Definition 1.2.4. Let g ∈ Sym (Ω) . The set of fixed points of g is fix (g) = {ω ∈ Ω | ωg = ω} ,
and the support of g is supp (g) = Ω \ fix (g) .

1.3. EXAMPLES OF PERMUTATION GROUPS 7

Definition 1.2.5. Let n ∈ P \ {1} and ω0, ω1, . . . , ωn−1 ∈ Ω be pairwise distinct. We
denote by (ω0 ω1 . . . ωn−1) the permutation g ∈ Sym (Ω) defined by ωg

i = ω(i+1) mod n

for all i ∈ Nn, and ωg = ω for all remaining ω ∈ Ω. This function is a cycle of length
n, or an n-cycle, and its support is {ω0, ω1, . . . , ωn−1} . Two cycles g, h ∈ Sym (Ω) are
disjoint if supp (g) ∩ supp (h) = ∅.

1.3 Examples of permutation groups

The definitions in this section, and the proofs of Lemmas 1.3.6 and 1.3.8, are inspired
by [2].

Definition 1.3.1. Let G ≤ Sym (Ω) . For each ω ∈ Ω, the set Gω = {g ∈ G | ωg = g} is
the stabiliser of ω in G. Given ∆ ⊆ Ω, the restriction of G to ∆ is G|∆ =

⋂
ω∈Ω\∆Gω.

The setwise stabiliser of ∆ in G is G∆ = {g ∈ G | ∆g = ∆} .

Lemma 1.3.2. If G ≤ Sym (Ω) , ω ∈ Ω and ∆ ⊆ Ω, then Gω, G|∆ , G∆ ≤ G.

Proof. Clearly 1 ∈ Gω. Also ω ∈ fix (g) ∩ fix (h) = fix
(
g−1
)
∩ fix (h) ⊆ fix

(
g−1h

)
, and

hence g−1h ∈ Gω, for all g, h ∈ Gω. Therefore Gω ≤ G.

Hence G|∆ =
⋂

δ∈Ω\∆Gδ ≤ G, as the set of subgroups of G is closed under intersection.
Clearly 1 ∈ G∆. Let g, h ∈ G∆. Then ∆g = ∆, so that ∆g−1

= ∆gg−1
= ∆ and hence

∆g−1h = ∆h = ∆. Therefore g−1h ∈ G∆, so G∆ ≤ G.

Definition 1.3.3. Let G ≤ Sym (Ω) and ω ∈ Ω. The orbit of ω under G is ωG =

{ωg | g ∈ G} .

Definition 1.3.4. The finitary symmetric group on Ω is the set of elements of Sym (Ω)

with finite support. It is written FSym (Ω) = {f ∈ Sym (Ω) | supp (f) is finite} .

Lemma 1.3.5. The finitary symmetric group on Ω is a normal subgroup of Sym (Ω) .

Proof. Clearly supp (1) = ∅ is finite, so 1 ∈ FSym (Ω) . Now let g, h ∈ FSym (Ω) . Since
fix (g) ∩ fix (h) ⊆ fix

(
g−1h

)
, by definition supp

(
g−1h

)
⊆ supp (g) ∪ supp (h) , which is

finite. Therefore g−1h ∈ FSym (Ω) , which shows that FSym (Ω) ≤ Sym (Ω) .

Let x ∈ Sym (Ω) and ω ∈ Ω. Then g fixes ω if and only if x−1gx fixes ωx. This implies
that supp

(
x−1gx

)
= supp (g)x , which has the same cardinality as supp (g) since x is a

bijection. Hence x−1gx ∈ FSym (Ω) , which shows that FSym (Ω) E Sym (Ω) .

8 CHAPTER 1. INTRODUCTION

Lemma 1.3.6. Each g ∈ FSym (Ω) is the product of a unique set of pairwise disjoint
cycles.

Proof. Suppose to the contrary that some g ∈ FSym (Ω) cannot be uniquely expressed
as the product of a set of pairwise disjoint cycles, and choose g with |supp (g)| minimal.
Then g 6= 1, as 1 is the product of zero cycles, and every other product of pairwise disjoint
cycles has non-empty support. Therefore supp (g) 6= ∅, and there exists ω ∈ supp (g) .

Note that supp
(
gi
)
⊆ supp (g) for all i ∈ Z, so ω〈g〉 ⊆ supp (g) is finite. Hence there

exist distinct i, j ∈ Z such that ωgi = ωgj . Choose i and j with n := j − i ∈ P minimal.
Then n ≥ 2, since ω = ωgjg−i

= ωgn and ω /∈ fix (g) . Moreover ω, ωg, . . . , ωgn−1 are
pairwise distinct, which means x :=

(
ω ωg . . . ωgn−1

)
is an n-cycle. Clearly g maps

ωgi 7→ ωg(i+1) mod n for all i ∈ Nn, so h := x−1g has support supp (g) \ ω〈g〉, and hence it
can be uniquely expressed as the product of a set X ⊆ FSym (Ω) of pairwise disjoint
cycles, each of which fix ω〈g〉 pointwise. Therefore X ∪ {x} is a set of pairwise disjoint
cycles whose product is hx = xh = g.

This implies that g is the product of a different set Y ⊆ FSym (Ω) of pairwise disjoint
cycles. There is exactly one y ∈ Y such that ω ∈ supp (y) . Since y is disjoint from
the other cycles in Y, it maps ω 7→ ωg. Hence ωg /∈ fix (y) , and it follows by a
straightforward induction argument that y maps ωgi 7→ ωg(i+1) mod n for all i ∈ Nn. The
remaining elements of Ω are fixed by y, since y is a cycle. Therefore y = x, so h is
the product of the cycles in Y \ {y} , and hence Y \ {y} = X. This is a contradiction
because Y 6= X ∪ {x} .

Definition 1.3.7. Let g ∈ FSym (Ω) . The cycle structure of g is the unique set
X ⊆ FSym (Ω) of pairwise disjoint cycles such that g is the product of the cycles in X.
If x ∈ X then g contains the cycle x. Moreover, if m = |supp (g)| and n = |X| , then
the parity of g is π (g) = (m− n) mod 2. An even permutation is one with parity 0,

and an odd permutation is one with parity 1.

Lemma 1.3.8. Let g ∈ FSym (Ω) . Then g can be expressed as a product of 2-cycles.
If g can be written as the product of n 2-cycles, then n ≡ π (g) mod 2.

Proof. By Lemma 1.3.6, it suffices to show that every cycle can be expressed as a
product of 2-cycles. To this end, let n ∈ P and ω0, ω1, . . . , ωn ∈ Ω be pairwise distinct.
Then

(ω0 ω1 · · · ωn) = (ω0 ω1) (ω0 ω2) . . . (ω0 ωn) .

1.3. EXAMPLES OF PERMUTATION GROUPS 9

Now let h, x ∈ FSym (Ω) such that x is a 2-cycle. Then h is the product of a unique set
X ⊆ FSym (Ω) of pairwise disjoint cycles, while x = (α β) for some distinct α, β ∈ Ω. If
supp (h)∩ {α, β} = ∅, then X ∪ {x} is a set of pairwise disjoint cycles whose product is
hx, so π (hx) ≡ π (h) + 1 mod 2. Otherwise, suppose that supp (h) ∩ {α, β} = {α, β} .
Then there exist cycles x1, x2 ∈ X such that α ∈ supp (x1) and β ∈ supp (x2) . Suppose
that x1 6= x2. Write x1 = (α ω1 · · · ωm) and x2 = (β σ1 · · · σn) for some m,n ∈ P and
ω1, ω2, . . . , ωm, σ1, σ2, . . . , σn ∈ Ω. It follows that

x1x2x = (α ω1 · · · ωm) (β σ1 · · · σn) (α β) = (α ω1 · · · ωm β σ1 · · · σn) ,

and hence π (hx) ≡ π (h) + 1 mod 2. Otherwise x1 = x2, and there exist m,n ∈ N and
ω1, ω2, . . . , ωm, σ1, σ2, . . . , σn ∈ Ω such that x1 = (α ω1 · · · ωm β σ1 · · · σn) . Hence

x1x = (α ω1 · · · ωm β σ1 · · · σn) (α β) = (α ω1 · · · ωm) (β σ1 · · · σn) ,

so π (hx) ≡ π (h)−1 ≡ π (h)+1 mod 2. For the remaining case, |supp (h) ∩ {α, β}| = 1.

Without loss of generality assume that supp (h) ∩ {α, β} = {α} . Then there exists
x1 ∈ X such that α ∈ supp (x1) (whereas β ∈ fix (x1)). Write x1 = (α ω1 · · · ωm) for
some m ∈ P and ω1, ω2, . . . , ωm ∈ Ω. It follows that π (hx) ≡ π (h) + 1 mod 2, since

x1x = (α ω1 · · · ωm) (α β) = (α ω1 · · · ωm β) .

In summary, π (hx) ≡ π (h) + 1 mod 2 for all h, x ∈ FSym (Ω) such that x is a 2-cycle.
Now let n ∈ N and x1, x2, . . . , xn ∈ FSym (Ω) be 2-cycles such that g =

∏n
i=1 xi. Then

π (g) ≡ π (gxn)− 1 ≡ · · · ≡ π

(
g
n−1∏
i=0

xn−i

)
− n ≡ π (1)− n ≡ n mod 2,

as required.

Definition 1.3.9. The alternating group on Ω is Alt (Ω) = {g ∈ FSym (Ω) | g is even} ,
and the alternating group of degree n, written An, is Alt (Pn) .

Lemma 1.3.10. The alternating group on Ω is a normal subgroup of Sym (Ω) , and
hence FSym (Ω) . Moreover, if |Ω| ≥ 2 then |FSym (Ω) : Alt (Ω)| = 2.

Proof. Clearly 1 ∈ Alt (Ω) , as π (1) = 0. Let g, h ∈ Alt (Ω) . By Lemma 1.3.8, g =∏m
i=1 xi and h =

∏n
i=1 yi for some m,n ∈ N and 2-cycles x1, x2, . . . , xm, y1, y2, . . . , yn ∈

10 CHAPTER 1. INTRODUCTION

FSym (Ω) such that m ≡ n ≡ 0 mod 2. It follows that g−1h =
∏m−1

i=0 xm−i
∏n

i=1 yi is
even, and hence g−1h ∈ Alt (Ω) . This shows that Alt (Ω) ≤ FSym (Ω) ≤ Sym (Ω) .

Let x ∈ Sym (Ω) . Then x−1gx =
∏m

i=1 x
−1xix is an even permutation, since x−1xix is

a 2-cycle with support supp (xi)x , for all i ∈ Pm. Therefore x−1gx ∈ Alt (Ω) , and hence
Alt (Ω) E Sym (Ω) . This implies that Alt (Ω) E FSym (Ω) .

Suppose that |Ω| ≥ 2. Then there exists a 2-cycle y ∈ FSym (Ω) , and g 7→ gy is a
bijection between Alt (Ω) and FSym (Ω) \ Alt (Ω) . Therefore |FSym (Ω) : Alt (Ω)| =
2.

Chapter 2

Identifying permutation groups

2.1 Motivation

The aim of this chapter is to present an algorithm which, given a permutation group G
acting on some finite set Ω, determines whether G is Alt (Ω) or Sym (Ω) . It is a one-sided
Monte Carlo algorithm, which means that it may (with a user-specified probability)
incorrectly report that G is not Alt (Ω) or Sym (Ω) . However, it only reports that G
is Alt (Ω) or Sym (Ω) if this is true. The first step towards this is to identify some
properties of permutation groups (transitivity and primitivity) which the alternating
and symmetric groups possess, and can be decided efficiently by a computer. If the
input group has one of these properties, it is not difficult to determine (using a one-sided
Monte Carlo algorithm) whether it contains Alt (Ω) . Otherwise, the algorithm can
report with certainty that G is not Alt (Ω) or Sym (Ω) . The final algorithm is described
in [1, pp. 226-7], but many of the preliminary results, namely Theorems 2.3.1 and 2.3.9,
Corollary 2.3.2 and Lemma 2.3.6, are taken from [2].

2.2 Primitive permutation groups

Definition 2.2.1. Let G ≤ Sym (Ω) and Σ ⊆ Ω be non-empty. Then G acts on Σ if
G|Σ = G. Suppose that G acts on Σ, and let ∆ ⊆ Σ. Then ∆ is a block for G in Σ if
∆g is either equal to or disjoint from ∆ for all g ∈ G.

11

12 CHAPTER 2. IDENTIFYING PERMUTATION GROUPS

Example 2.2.2. Let G ≤ Sym (Ω) act on some Σ ⊆ Ω. Then ∅, Σ and all singleton
subsets of Σ are blocks for G in Σ. These are the trivial blocks for G.

Example 2.2.3. Let G ≤ Sym (Z) be the group of permutations corresponding to
addition in Z (this is the image Zφ from Theorem 1.2.3). Also let n ∈ Z. Then nZ is a
block for G in Z. It is also a non-trivial block provided that n /∈ {−1, 0, 1} .

Definition 2.2.4. Let G ≤ Sym (Ω) act on some Σ ⊆ Ω. Then G acts transitively on Σ

if for each pair α, β ∈ Σ there exists g ∈ G such that αg = β (equivalently, if σG = Σ

for all σ ∈ Σ). If, in addition, there are no non-trivial blocks for G in Σ, then G acts
primitively on Σ. Moreover, if G acts transitively (primitively) on Ω, it is transitive
(primitive).

Lemma 2.2.5. If |Ω| 6= 2 then Sym (Ω) , FSym (Ω) and Alt (Ω) are primitive. Moreover,
Sym (Ω) and FSym (Ω) are primitive even if |Ω| = 2.

Proof. If |Ω| = 1 then Sym (Ω) = FSym (Ω) = Alt (Ω) = 1 is clearly transitive. Suppose
that |Ω| = 2, and write Ω = {α, β} . Then (α β) ∈ FSym (Ω) , so Sym (Ω) = FSym (Ω)

is transitive. Otherwise |Ω| > 2. Let α, β ∈ Ω be distinct. Then there is a third distinct
γ ∈ Ω, and (α β γ) = (α γ) (β γ) ∈ Alt (Ω) ≤ FSym (Ω) ≤ Sym (Ω) maps α 7→ β.

Therefore Sym (Ω) , FSym (Ω) and Alt (Ω) are transitive.
Now let ∆ ⊂ Ω with |∆| ≥ 2. Then there exist distinct α, β ∈ ∆ and γ ∈ Ω \ ∆. It
follows that g := (α β γ) ∈ Alt (Ω) ≤ FSym (Ω) ≤ Sym (Ω) . But β ∈ ∆g ∩ ∆ and
γ ∈ ∆g \ ∆, which means ∆ is not a block for Sym (Ω) , FSym (Ω) or Alt (Ω) in Ω.

Therefore each group has no non-trivial blocks, so each is primitive except for Alt (Ω)

when |Ω| = 2.

We observe in Lemma 2.2.7 that A2 is actually the only imprimitive permutation group
with no non-trivial blocks.

Lemma 2.2.6. Let G ≤ Sym (Ω) act on some Σ ⊆ Ω. Also let ∆ ⊆ Σ, and suppose that
∆ is not a block for G in Σ. Then there exists g ∈ G such that ∆g \∆ 6= ∅ 6= ∆g ∩∆.

Proof. Since ∆ is not a block for G in Σ, there exists g ∈ G such that ∆g ∩∆ 6= ∅ and
∆g 6= ∆. If ∆g \∆ 6= ∅ then we are done. Otherwise ∆g ⊆ ∆, so it cannot be the case
that ∆ ⊆ ∆g. Hence there exists δ ∈ ∆ \∆g. It follows that δg−1 ∈ ∆g−1 \∆, because
if δg−1 ∈ ∆ then δ = δg

−1g ∈ ∆g. Moreover, there exists ω ∈ ∆g ∩ ∆, which implies

2.3. IDENTIFYING Alt (Ω) OR Sym (Ω) 13

that ωg−1 ∈ ∆gg−1 ∩ ∆g−1
= ∆g−1 ∩ ∆. Hence ∆g−1 \ ∆ 6= ∅ and ∆g−1 ∩ ∆ 6= ∅, as

required.

Lemma 2.2.7. Let G ≤ Sym (Ω) act on some Σ ⊆ Ω. Suppose that |Σ| ≥ 3, and there
are no non-trivial blocks for G in Σ. Then G acts primitively on Σ.

Proof. Suppose that G does not act transitively on Σ. Then there exists σ ∈ Σ such
that σG 6= Σ. Clearly σ ∈ σG 6= ∅. Suppose that

∣∣σG∣∣ = 1. Then ∆ := Σ \ σG ⊂ Σ is
not a block for G in Σ, since |∆| = |Σ| − 1 ≥ 2. By Lemma 2.2.6 there exists g ∈ G

such that ∆g \∆ 6= ∅. Since ∆g \∆ ⊆ Σ \∆ = σG = {σ} , it follows that σ ∈ ∆g. This
leads to the contradiction σg−1 ∈ ∆ = Σ \ σG. Otherwise

∣∣σG∣∣ ≥ 2, so σG is not a block
for G in Σ. By Lemma 2.2.6, there exists g ∈ G such that

(
σG
)g \ σG 6= ∅. Choose

ω ∈
(
σG
)g \ σG. Then ω = αg for some α ∈ σG. Furthermore, α = σh for some h ∈ G.

But this implies that ω =
(
σh
)g

= σhg, which contradicts ω /∈ σG. Therefore G acts
transitively on Σ, and since there are no non-trivial blocks for G in Σ it follows that G
acts primitively on Σ.

2.3 Identifying Alt (Ω) or Sym (Ω)

The following theorem is due to Jordan [3], and the proof we present can be found in
[2, p. 77]. A few gaps have been filled for the case where Ω is infinite, which requires
Lemma 2.2.6 and Zorn’s Lemma. It can be used to identify a permutation group, by
checking if it is primitive and searching for a 3-cycle. This is not the approach we adopt,
but our algorithm relies on Jordan’s result.

Theorem 2.3.1. Let G ≤ Sym (Ω) be primitive, and suppose it contains a 3-cycle x.
Then Alt(Ω) ≤ G.

Proof. For each ∆ ⊆ Ω let A∆ = Alt (Ω)|∆ = {g ∈ Alt (Ω) | supp (g) ⊆ ∆} . We note
that A∆ is a subgroup of Alt (Ω) isomorphic to Alt (∆) , although this fact will not
be required for the proof. Let W = {∆ ⊆ Ω | supp (x) ⊆ ∆ and A∆ ⊆ G} be partially
ordered by set inclusion. The only even permutations with support contained in supp (x)

are 1, x and x−1, so Asupp(x) =
{
1, x, x−1

}
⊆ G and hence supp (x) ∈ W. In particular

W 6= ∅. Let D ⊆ W be a non-empty chain, and let g ∈ A⋃
D. Then supp (g) ⊆

⋃
D is

finite, so supp (g) ⊆ ∆ for some ∆ ∈ D. It follows that g ∈ A∆ ⊆ G, which implies that

14 CHAPTER 2. IDENTIFYING PERMUTATION GROUPS

A⋃
D ⊆ G. Therefore

⋃
D ∈ W is an upper bound for D. By Zorn’s lemma it follows

that there is a maximal element ∆ ∈ W.1

Suppose for a contradiction that ∆ 6= Ω. Since G is primitive and |∆| ≥ |supp (x)| = 3,
it follows that ∆ is not a block for G in Ω. By Lemma 2.2.6, there exists g ∈ G such that
∆g \∆ 6= ∅ and ∆g∩∆ 6= ∅. Therefore there exist α ∈ ∆g \∆ and β ∈ ∆g∩∆. Suppose
that |∆g ∩∆| > 1. Then there exists γ ∈ ∆g ∩∆ distinct from α and β. These are all
elements of ∆g, so α = τ g, β = µg and γ = νg for some distinct τ, µ, ν ∈ ∆. It follows
that (α β γ) = g−1 (τ µ ν) g ∈ G, since (τ µ ν) ∈ A∆ ⊆ G. Otherwise |∆g ∩∆| = 1,

and hence ∆g ∩∆ = {β} . Since |∆| ≥ 3 we can choose a 3-cycle (β γ δ) ∈ A∆ ⊆ G.

Also choose ε ∈ ∆g distinct from α and β, which will not be γ or δ since γ, δ ∈ ∆.

Then α = τ g, β = µg and ε = νg for some distinct τ, µ, ν ∈ ∆. It follows that
(α β ε) = g−1 (τ µ ν) g ∈ G, since (τ µ ν) ∈ A∆ ⊆ G. Therefore

(α β γ) = (α β ε) (δ γ β) (ε β α) (β γ δ) =
[
(α β ε)−1 , (β γ δ)

]
∈ G.

In either case, there exists a γ ∈ ∆ such that (α β γ) ∈ G. Let Γ = ∆ ∪ {α} ⊃ ∆,

so that Γ /∈ W. This implies that AΓ 6⊆ G, so there exists y ∈ Alt (Ω) \ G such that
supp (y) ⊆ Γ. Clearly αy 6= α, since otherwise y ∈ A∆ ⊆ G. In fact αy ∈ ∆, since if
αy /∈ Γ then it is a fixed point of y, so that αyy = αy and y is not injective. Now let
z ∈ A∆ map αy 7→ γ (take z = 1 if αy = γ, or else z = (αy γ ε) for some ε ∈ ∆\{αy, γ}).
Then yz (α β γ) ∈ Alt (Ω) fixes α and elements of Ω \Γ, which means it lies in A∆ ⊆ G.

Since z (α β γ) ∈ G as well, it follows that y ∈ G, which is a contradiction. Therefore
∆ = Ω, which implies that Alt (Ω) = AΩ ⊆ G.

Corollary 2.3.2. Let G ≤ Sym (Ω) be primitive, and suppose it contains a 2-cycle
x = (α β) . Then FSym (Ω) ≤ G.

Proof. If |Ω| ≤ 2 then G = 〈x〉 = Sym (Ω) . Otherwise |Ω| ≥ 3, so that supp (x) = {α, β}
is not a block for G in Ω. Therefore {α, β}g ∩{α, β} 6= ∅ and {α, β}g 6= {α, β} for some
g ∈ G. Without loss of generality take {α, β}g = {α, γ} for some γ ∈ Ω distinct from α

and β. Then either αg = α and βg = γ, or αg = γ and βg = α. In both cases it follows
1This relies on the axiom of choice, which is not required when Ω is finite. To show this, suppose W

has no maximal element. Then each member of W is properly contained within another one, so we
can find an infinite strictly increasing sequence supp (x) = ∆0 ⊂ ∆1 ⊂ · · · of members of W. But then∣∣∆|Ω|

∣∣ > |Ω| , which contradicts ∆|Ω| ⊆ Ω.

2.3. IDENTIFYING Alt (Ω) OR Sym (Ω) 15

that
(α β γ) = (β α) g−1 (α β) g = [x, g] ∈ G.

Therefore Alt (Ω) ≤ G by Theorem 2.3.1. Since Alt (Ω) < 〈(α β) ,Alt (Ω)〉 ≤ FSym (Ω) ,

it follows from Lemma 1.3.10 that FSym (Ω) = 〈(α β) ,Alt (Ω)〉 ≤ G.

We aim to generalise this result to a larger class of cycles of prime length, for the case
where Ω is finite. To do so, we require several preliminary results.

Lemma 2.3.3. Let G ≤ Sym (Ω) act on some Σ ⊆ Ω. Suppose that p := |Σ| is prime,
and there is a p-cycle x ∈ G. Then G acts primitively on Σ.

Proof. Clearly supp (x) = Σ, soG acts transitively on Σ. Enumerate Σ as σ0, σ1, . . . , σp−1

in such a way that x = (σ0 σ1 . . . σp−1) . Let ∆ ⊂ Σ with |∆| ≥ 2. Then there exist
distinct i, j ∈ Np such that σi, σj ∈ ∆. Without loss of generality, we can assume
that i < j. Clearly g := xj−i ∈ G maps σk 7→ σ(k+j−i) mod p for all k ∈ Np, and hence
σgi = σj ∈ ∆g ∩ ∆. Suppose for a contradiction that ∆g = ∆. Then σg

n

i ∈ ∆ for all
n ∈ N, by a straightforward induction argument. Let k ∈ Np be such that σk ∈ Σ \∆.
Also, note that j− i ∈ Np \{0} has a multiplicative inverse, say m, in Np \{0}. It follows
that σk = σ(i+(j−i)n) mod p = σg

n

i ∈ ∆, where n := m (p+ k − i) ∈ N. This contradicts
σk /∈ ∆, so ∆g 6= ∆. Therefore ∆ is not a block for G in Σ, which implies that G acts
primitively on Σ.

Lemma 2.3.4. Let G ≤ Sym (Ω) and g ∈ G. Also let ∆ ⊆ Ω, and suppose that G|∆
acts primitively on ∆. Then G|Γ acts primitively on Γ := ∆g.

Proof. Clearly each h ∈ G|Γ fixes every ω ∈ Ω \ Γ, and hence G|Γ acts on Γ. Now
let α, β ∈ Γ. Then there exist γ, δ ∈ ∆ such that α = γg and β = δg. Since G|∆
acts transitively on ∆, there also exists h ∈ G|∆ such that γh = δ. It follows that
αg−1hg = γhg = δg = β. If ε ∈ Ω \ Γ then εg

−1
/∈ ∆, so ε is fixed by g−1hg, which

therefore lies in G|Γ . This shows that G|Γ acts transitively on Γ.

Let Λ ⊂ Γ with |Λ| ≥ 2. Then Λg−1 ⊂ ∆ and
∣∣∣Λg−1

∣∣∣ = |Λ| ≥ 2, so Λg−1 is not a block for

G|∆ in ∆. Hence there exists h ∈ G|∆ such that Λg−1h ∩ Λg−1 6= ∅ but Λg−1h 6= Λg−1
.

It follows that Λg−1hg ∩ Λ 6= ∅ but Λg−1hg 6= Λ. Therefore Λ is not a block for G|Γ in
Γ, since g−1hg ∈ G|Γ as shown above. This implies that G|Γ acts primitively on Γ.

16 CHAPTER 2. IDENTIFYING PERMUTATION GROUPS

Lemma 2.3.5. Let G,H ≤ Sym (Ω) act primitively on some ∆,Γ ⊆ Ω respectively.
Further, suppose that ∆ ∩ Γ 6= ∅. Then 〈G,H〉 acts primitively on ∆ ∪ Γ.

Proof. Since 〈G,H〉|∆∪Γ ≤ 〈G,H〉 contains both G and H, it also contains 〈G,H〉 ,
which implies that 〈G,H〉 = 〈G,H〉|∆∪Γ acts on ∆∪Γ. If |∆ ∪ Γ| ≤ 2 then ∆∪Γ is one
of ∆ or Γ, and the result is clear. Otherwise |∆ ∪ Γ| ≥ 3. Let Λ ⊂ ∆ ∪ Γ with |Λ| ≥ 2.

Then there exists ω ∈ (∆ ∪ Γ) \ Λ. Without loss of generality assume that ω ∈ ∆.

Suppose that Λ ⊆ ∆. Then Λ ⊂ ∆ since ω ∈ ∆ \ Λ. This implies that Λ is not a block
for G in ∆, so there exists g ∈ G such that Λg is neither disjoint from, nor equal to, Λ.
Since g ∈ G ≤ 〈G,H〉 , it follows that Λ is not a block for 〈G,H〉 in ∆ ∪ Γ.

Now suppose that Λ ∩ ∆ = ∅. Then Λ ⊆ Γ, and in fact Λ ⊂ Γ : if Λ = Γ it would
contain ∆ ∩ Γ 6= ∅ (but Λ ∩ ∆ = ∅). As above, it follows that Λ is not a block for
〈G,H〉 in ∆ ∪ Γ.

Otherwise Λ 6⊆ ∆ and Λ ∩ ∆ 6= ∅, so there exist γ ∈ Λ \ ∆ and δ ∈ Λ ∩ ∆. Since
G acts transitively on ∆, there exists g ∈ G ≤ 〈G,H〉 such that δg = ω. Therefore
ω ∈ Λg \ Λ, which implies that Λg 6= Λ. Moreover g fixes γ, since supp (g) ⊆ ∆, and
hence γ ∈ Λg ∩ Λ 6= ∅. This shows that Λ is not a block for 〈G,H〉 in ∆ ∪ Γ.

Therefore 〈G,H〉 acts primitively on ∆ ∪ Γ, by Lemma 2.2.7.

Lemma 2.3.6. Suppose that |Ω| ≥ 2, and let G ≤ Sym (Ω) be primitive. Then Gω is a
maximal subgroup of G for all ω ∈ Ω.

Proof. Let ω, υ ∈ Ω be distinct. Since G is transitive, there exists g ∈ G such that
ωg = υ 6= ω. Therefore g ∈ G\Gω 6= ∅. Now let H ≤ G with Gω < H. Then there exists
h ∈ H \Gω, so that ω /∈ fix (h) . Since ω, ωh ∈ ωH , this implies that

∣∣ωH
∣∣ ≥ 2. Suppose

for a contradiction that ωH 6= Ω. Then ωH is not a block for G in Ω, as G is primitive.
Hence by Lemma 2.2.6, there exists g ∈ G such that

(
ωH
)g ∩ ωH 6= ∅ 6=

(
ωH
)g \ ωH .

Therefore ωh1g = ωh2 and ωh3g /∈ ωH for some h1, h2, h3 ∈ H. In particular h3g /∈ H,

which implies that g /∈ H. But ωh1gh
−1
2 = ωh2h

−1
2 = ω, so that h1gh−1

2 ∈ Gω ≤ H and
hence g ∈ H. This is a contradiction, so ωH = Ω. Now let g ∈ G. Then ωg ∈ ωH , so there
exists h ∈ H such that ωh = ωg. It follows that ωgh−1

= ω, so that gh−1 ∈ Gω ≤ H and
hence g ∈ H. This implies that G ⊆ H, which shows that Gω is maximal.

Lemma 2.3.7. Let G be a cyclic group generated by x ∈ G. Then Aut (G) is abelian.

2.3. IDENTIFYING Alt (Ω) OR Sym (Ω) 17

Proof. Let α, β ∈ Aut (G) . Then xα = xi and xβ = xj for some i, j ∈ Z. Also let g ∈ G,

so that g = xk for some k ∈ Z. It follows that gα =
(
xk
)α

= (xα)k =
(
xi
)k

=
(
xk
)i

= gi.

Similarly, gβ = gj for all g ∈ G. Therefore gαβ =
(
gi
)β

= gij = gji =
(
gj
)α

= gβα for
all g ∈ G, which implies that αβ = βα. Hence Aut (G) is abelian.

Lemma 2.3.8. Let G ≤ Sym (Ω) and x ∈ G. Also let N = NG (C) be the normaliser
of C := 〈x〉 in G. Then x commutes with every element of N ′, the derived group of N.

Proof. For each n ∈ N define the function θn : C → C by yθn = n−1yn for all y ∈ C.

These functions are well-defined since n−1Cn = C for all n ∈ N. In fact they are
automorphisms of C, for the same reason that g 7→ n−1gn is an automorphism of G.
Thus we can define a homomorphism φ : N → Aut (C) by nφ = θn for all n ∈ N.

Lemma 2.3.7 implies that Aut (C) is abelian, so

[m,n]φ =
(
m−1n−1mn

)φ
=
(
m−1

)φ (
n−1

)φ
mφnφ =

(
mφ
)−1

mφ
(
nφ
)−1

nφ = 1

for each m,n ∈ N. This implies that N ′ ≤ Ker (φ) . Now let g ∈ N ′. Then gφ = 1 and
hence g−1xg = xθg = xg

φ
= x. Thus xg = gx as required.

We now prove our main result on primitive permutation groups. The following proof
is again taken from [2], except for the base case, which requires that we construct a
3-cycle rather than a 2-cycle. This error is identified in [4]. A correct, but less detailed,
proof appears in [5].

Theorem 2.3.9. Suppose that Ω is finite, and let G ≤ Sym (Ω) be primitive. Further,
suppose that G contains a p-cycle x for some prime p ≤ |Ω| − 3. Then Alt (Ω) ≤ G.

Proof. By Theorem 2.3.1 and Corollary 2.3.2, we may assume p ≥ 5. Let n = |Ω| − p,

so that n ≥ 3. We shall proceed by induction on n, but defer the base case n = 3. So
assume that n ≥ 4 and the result is true for |Ω|−p = n−1. Then p ≤ |Ω|−4, and every
subgroup of G that contains x and acts primitively on some ∆ ⊂ Ω, with |∆| = |Ω| − 1,

will also contain Alt (∆) . We proceed to find such a subgroup.
Let W = {∆ ⊂ Ω | G|∆ acts primitively on ∆} be partially ordered by set inclusion.
By Lemma 2.3.3 supp (x) ∈ W, since |supp (x)| = p < |Ω| . Hence there exists a maximal
∆ ∈ W containing supp (x) , as Ω is finite.2 Since ∆ ⊂ Ω and |∆| ≥ p ≥ 2, this is not

2For a more detailed explanation, see footnote 1.

18 CHAPTER 2. IDENTIFYING PERMUTATION GROUPS

a block for G in Ω. So by Lemma 2.2.6, there exists g ∈ G such that ∆g \∆ 6= ∅ and
∆g ∩∆ 6= ∅. Therefore ∆ ⊂ ∆g ∪∆, and hence ∆g ∪∆ /∈ W. But Lemma 2.3.4 implies
that ∆g ∈ W, so by Lemma 2.3.5 G|∆g∪∆ acts primitively on ∆g ∪∆. It follows that
∆g ∪∆ = Ω, and

|Ω| = |∆g ∪∆| = |∆g|+ |∆| − |∆g ∩∆| < 2 |∆| ,

since clearly |∆g| = |∆| . Now let ω ∈ Ω \∆, and g ∈ Gω. Then

|Ω| ≥ |∆g ∪∆| = |∆g|+ |∆| − |∆g ∩∆| = 2 |∆| − |∆g ∩∆| > |Ω| − |∆g ∩∆| ,

and hence |∆g ∩∆| > 0. Moreover ω /∈ ∆g ∪∆, since ωg = ω. Therefore ∆g ∪∆ ⊂ Ω,

and hence Lemmas 2.3.4 and 2.3.5 imply that ∆g ∪ ∆ ∈ W. Since ∆ is finite, and
maximal in W, it follows that ∆g = ∆. Therefore g ∈ G∆, which shows that Gω ≤ G∆.

Also G∆ < G as ∆ is not a block for G in Ω. Hence by Lemma 2.3.6, Gω = G∆ for all
ω ∈ Ω \∆.
Let Γ = Ω \∆, and suppose for a contradiction that |Γ| ≥ 2. Then Γ is not a block for
G in Ω, so by Lemma 2.2.6 there exists g ∈ G such that Γg ∩ Γ 6= ∅ and Γg \ Γ 6= ∅.
Choose γ ∈ Γg ∩ Γ and δ ∈ Γg \ Γ, so that γ = αg and δ = βg for some α, β ∈ Γ.

Moreover δ ∈ ∆, since δ /∈ Γ = Ω \∆. Since G|∆ acts transitively on ∆, there exists
h ∈ G|∆ ≤ G such that δh 6= δ. However γh = γ, as γ /∈ ∆ and hence G|∆ ≤ Gγ .

It follows that ghg−1 ∈ G fixes α but not β, both of which lie in Γ = Ω \ ∆. This
contradicts Gα = G∆ = Gβ, so |Γ| < 2 and hence |Γ| = 1.

It follows that |∆| = |Ω|−1. Moreover x ∈ G|∆ , which acts primitively on ∆ ∈ W, since
supp (x) ⊆ ∆. Therefore Alt (∆) ≤ G|∆ , by the induction hypothesis. This implies that
G contains a 3-cycle, as |∆| ≥ p > 3 and G|∆ ≤ G. By Theorem 2.3.1 it follows that
Alt (Ω) ≤ G, which completes the inductive step.
For the base case |Ω| = p+n = p+3, so |Sym (Ω)| = |Ω|! = (p+ 3)! and hence p, which
is at least 5, does not divide 1

p |Sym (Ω)| . Therefore 1 and p are the only powers of p
that divide |G| , as |G| divides |Sym (Ω)| . It follows that C := 〈x〉 is a Sylow p-subgroup
of G.
Now let N = NG (C) be the normaliser of C in G. If ω ∈ fix (x) and n ∈ N, then
nxn−1 ∈ C fixes ω, so (ωn)x = ωnxn−1n = ωn and hence ωn ∈ fix (x) . Therefore each
n ∈ N fixes fix (x) . Furthermore, for each distinct ω, σ ∈ fix (x) there exists n ∈ N

which fixes ω but not σ. To show this, suppose to the contrary that Nω = (Nω)σ for some

2.3. IDENTIFYING Alt (Ω) OR Sym (Ω) 19

distinct ω, σ ∈ fix (x) . Then C ≤ (Gω)σ ≤ Gω, since ω, σ ∈ fix (y) for all y ∈ C. This
implies that C is a Sylow p-subgroup of both Gω and (Gω)σ . Moreover, Nω = (Nω)σ
is the normaliser of C in each of the stabilisers. Therefore |Gω : Nω| ≡ |(Gω)σ : Nω| ≡
1 mod p, by Sylow’s Third Theorem, and since |Gω : Nω| = |Gω : (Gω)σ| |(Gω)σ : Nω| ,
it follows that |Gω : (Gω)σ| ≡ 1 mod p. Now write Γ = {γ} . Then there exists g ∈ G

such that γg = ω, as G is transitive. It follows that ∆g = (Ω \ {γ})g = Ω \ {ω} , so by
Lemma 2.3.4 Gω = ∩δ∈Ω\∆gGδ = G|∆g acts primitively, thus transitively, on Ω \ {ω} .
The Orbit-Stabiliser Theorem implies the contradiction

|Gω : (Gω)σ| =
∣∣σGω

∣∣ = |Ω \ {ω}| = |Ω| − 1 = p+ 2 6≡ 1 mod p.

If we write fix (x) = {α, β, γ} , then there exist m,n ∈ N such that m fixes α, but not
β, and n fixes β, but not γ. Since fix (x)m = fix (x)n = fix (x) , it follows that m swaps
β with γ and n swaps γ with α. Now let g = [m,n] ∈ N ′. Then

αg = αm−1n−1mn = αn−1mn = γmn = βn = β,

βg = βm
−1n−1mn = γn

−1mn = αmn = αn = γ,

γg = γm
−1n−1mn = βn

−1mn = βmn = γn = α,

which implies that g contains (α β γ) . By Lemma 2.3.8 g = x−igxi for all i ∈ Z.
Write x = (ω0 ω1 . . . ωp−1) for some ω0, ω1, . . . , ωp−1 ∈ Ω. Then ωg

0 ∈ supp (x) , since
g−1 ∈ N fixes fix (x) . Therefore ωg

0 = ωi for some i ∈ Np, and hence

ωg
j = ωx−jgxj

j = ωgxj

0 = ωxj

i = ω(i+j) mod p

for all j ∈ Np. It follows that gp fixes each point of supp (x) = {ω0, ω1, . . . , ωp−1} , so
gp = (α β γ)p , which is either (α β γ) or (α β γ)2 = (α γ β) because 3 - p. This implies
that gp ∈ N ′ ≤ N ≤ G is a 3-cycle, so by Theorem 2.3.1 Alt (Ω) ≤ G.

This theorem implies a similar result about transitive permutation groups, taken from
[1].

Corollary 2.3.10. Suppose that Ω is finite, and let G ≤ Sym (Ω) be transitive. If there
exists x ∈ G and a prime p with 1

2 |Ω| < p ≤ |Ω| − 3 such that x contains a p-cycle, then
Alt (Ω) ≤ G.

20 CHAPTER 2. IDENTIFYING PERMUTATION GROUPS

Proof. Let ∆ ⊆ supp (x) be the support of the p-cycle in the cycle structure of x. Then
∆x = ∆ and |∆| = p, so (supp (x) \∆)x = supp (x) \∆ and |supp (x) \∆| ≤ |Ω| − p.

Therefore each ω ∈ supp (x) \∆ will be fixed by xi for some i ∈ P with i ≤ |Ω| − p.

This implies that x(|Ω|−p)! ∈ G is a p-cycle. It remains to show that G is primitive.
Suppose to the contrary that G is not primitive. Then there exists a non-trivial block
∆ for G in Ω. This means that 2 ≤ |∆| < |Ω| , and ∆g is either equal to or disjoint from
∆ for all g ∈ G. As G is transitive, it follows that Σ := {∆g | g ∈ G} is a partition of
Ω into sets of size |∆| . In particular, |∆| ≤ 1

2 |Ω| . For each g ∈ G define the function
θg : Σ → Σ by Γθg = Γg for all Γ ∈ Σ. Then each θg is a bijection, with inverse θg−1 .

Hence we can define a homomorphism φ : G → Sym (Σ) by gφ = θg for all g ∈ G.

Clearly

Ker (φ) = {g ∈ G | Γg = Γ for all Γ ∈ Σ} ≤ 〈Sym (Ω)|Γ | Γ ∈ Σ〉 ' (Sn)
m ,

where m := |Σ| and n := |∆| . By the First Isomorphism Theorem, |G| =
∣∣Gφ

∣∣ |Ker (φ)|
divides m! × (n!)m . But 2 ≤ n ≤ 1

2 |Ω| , so that m ≤ 1
2 |Ω| and hence m,n < p.

This implies that p does not divide m! × (n!)m , so it cannot divide |G| , which is
a contradiction because x(|Ω|−p)! ∈ G has order p. Therefore G is primitive, so by
Theorem 2.3.9 Alt (Ω) ≤ G.

2.4 An algorithm to identify Alt (Ω) or Sym (Ω)

The above results give some simple criteria which can be used to determine whether a
given permutation group is isomorphic to one of the symmetric or alternating groups.
They lead to a randomised Monte Carlo algorithm which can answer this question
efficiently. The following lemma can be used to find the probability that such an
algorithm will succeed.

Lemma 2.4.1. Suppose that Ω is finite, and let G ≤ Sym (Ω) with Alt (Ω) ≤ G. Let
q ∈ P and suppose that 1

2 |Ω| < q ≤ |Ω| − 2. Then 1
q |G| elements of G contain a q-cycle.

If G = Sym (Ω) , then this also holds for q ∈ {|Ω| , |Ω| − 1} .

Proof. There are
(|Ω|

q

)
choices for subsets of Ω with size q. Since q > 1

2 |Ω| , choosing a
different set here gives rise to a different permutation. Once one has been chosen, the
number of possible q-cycles to act on it is (q − 1)!. The remaining elements of Ω can be

2.4. AN ALGORITHM TO IDENTIFY Alt (Ω) OR Sym (Ω) 21

permuted amongst themselves in an arbitrary way, and the number of possible ways is
(|Ω| − q)!. If G = Sym (Ω) , this implies that the number of choices for x is

(
|Ω|
q

)
(q − 1)! (|Ω| − q)! =

|Ω|! (q − 1)! (|Ω| − q)!

q! (|Ω| − q)!
=

|Ω|!
q

=
1

q
|Sym (Ω)| = 1

q
|G| .

Otherwise G = Alt (Ω) , so only even permutations can be counted. However, the
number of sets of size q and q-cycles on a given set remains the same. If q is odd,
then the q-cycle contributes an even number of 2-cycles to x, so the number of possible
permutations of the remaining elements will be

∣∣A|Ω|−q

∣∣ = 1
2 (|Ω| − q)!. Otherwise q

is even, so the q-cycle contributes an odd number of 2-cycles to x, and the number
of possible permutations of the remaining elements is

∣∣S|Ω|−q \A|Ω|−q

∣∣ = 1
2 (|Ω| − q)!.

Therefore the number of choices for x is(
|Ω|
q

)
(q − 1)!

1

2
(|Ω| − q)! =

|Ω|! (q − 1)! (|Ω| − q)!

2q! (|Ω| − q)!
=

|Ω|!
2q

=
1

q
|Alt (Ω)| = 1

q
|G| .

Lemma 2.4.2. Given n ∈ P, a group G ≤ Sn and a constant ε ∈ (0, 1) , Algorithm 1
reports whether An ≤ G. The probability that it claims An 6≤ G when An ≤ G is at
most ε.

Proof. If G is not transitive, then An 6≤ G unless n = 2, by Lemma 2.2.5. Any
permutation group of degree 2 contains A2 = 1, so the algorithm is correct in this case.
Otherwise G is transitive, and by Corollary 2.3.10 it suffices to exhibit a p-cycle x ∈ G

such that p is a prime between
⌊
n
2

⌋
+ 1 and n − 3. If An 6≤ G such a cycle will not

be found, so the algorithm will correctly report failure. Otherwise An ≤ G, and by
Lemma 2.4.1 the proportion of such cycles in G is the sum p given on line 4. If there
are no such elements, then n ≤ 7 and a brute-force approach is efficient. Otherwise, the
probability that none of c ∈ P random elements of G have the required cycle length is
q := (1− p)c . If c > log1−p (ε) then q < ε.

22 CHAPTER 2. IDENTIFYING PERMUTATION GROUPS

Algorithm 1 IsAlternatingOrSymmetric(G, ε).

1: if IsTransitive (G) then
2: n := Degree (G) ;

3: P := PrimesInInterval
(⌊

n
2

⌋
+ 1, n− 3

)
;

4: p := Sum
[
1
q

∣∣∣ q ∈ P
]
;

5:

6: if p = 0 then
7: return |G| ≥ n!

2 ;

8: end if;
9:

10: c :=
⌈
log1−p (ε)

⌉
;

11: R := RandomProcess (G) ;

12:

13: for i := 1 to c do
14: g := Random (R) ;

15: s := CycleStructure (g) ;

16: if LongestCycleLength (s) ∈ P then
17: return true;
18: end if;
19: end for;
20:

21: return false;
22: else
23: return n = 2;

24: end if;

Chapter 3

Constructive recognition of An

and Sn

3.1 Motivation

The algorithm presented in the previous chapter only works for permutation representa-
tions of groups, using as it does the concepts of transitivity, primitivity and cycles. In
this section we take a more general approach, which only requires that we can compute
gh, g−1 and decide whether g = h, for elements g and h of the input group G. These
so-called black-box groups include matrix groups and permutation groups. However,
they do not include finitely-presented groups, as the equality of two elements in such a
group is, in general, impossible to check. Nevertheless, we make use of finite presenta-
tions for the alternating group of degree n ∈ P in order to establish an isomorphism
between An and a subgroup of G. Once this isomorphism has been constructed, it can
be computed in either direction. Most of the algorithms we present are described in
[6]; we have filled in the implementation details and made adjustments to ensure their
correctness, in particular for the cases 5 ≤ n ≤ 10, which are not covered in [6].

3.2 Presentations for the alternating groups

The following presentations for the alternating groups are due to Carmichael [7]. Their
proofs are omitted. The second is stated incorrectly in [6], but [8] is a reliable, and

23

24 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF An AND Sn

accessible, source containing the original presentations.

Theorem 3.2.1. Let n ∈ P with n ≥ 4. If n is odd, then An has presentation〈
s, t

∣∣∣∣ t3, sn−2, (st)n ,
(
ts−1ts

)2
,
(
ts−2ts2

)2
, . . . ,

(
ts−

n−3
2 ts

n−3
2

)2〉
;

otherwise An has presentation〈
s, t

∣∣∣∣∣ t3, sn−2, (st)n−1 ,
(
t−1s−1ts

)2
,
(
ts−2ts2

)2
, . . . ,

(
t(−1)

n−2
2 s−

n−2
2 ts

n−2
2

)2
〉
.

These presentations are useful for our purposes since they completely describe the
alternating groups without reference to their permutation representations. We connect
these descriptions in the following way, in order to exploit the permutation structure in
a general context.

Definition 3.2.2. Let n ∈ P with n ≥ 4. If n is odd, the standard generators for An

are (3 4 . . . n) and (1 2 3) . Otherwise, they are (1 2) (3 4 . . . n) and (1 2 3) . If G is
a group and s, t ∈ G are such that there exists an isomorphism θ : 〈s, t〉 → An which
maps s and t to the respective standard generators for An, then s and t are alternating
n-generators within G.

Lemma 3.2.3. Let G be a group and n ∈ P with n ≥ 5. If s, t ∈ G satisfy the
presentation for An given in Theorem 3.2.1, and 〈s, t〉 6= 1, then s and t are alternating
n-generators within G.

Proof. Let F be the free group on two generators y and z. Then F/N ' An for some
N E F, and by von Dyck’s Theorem there exists a homomorphism φ : F/N → 〈s, t〉
which maps Ny 7→ s and Nz 7→ t. Since An is simple (as n ≥ 5), either Ker (φ) = 1 or
Ker (φ) = An. The latter is impossible because 〈s, t〉 6= 1, and s, t ∈ Aφ

n ≤ 〈s, t〉 , so φ is
an isomorphism.
Now let a = (3 4 . . . n) and b = (1 2 3) . Then b3 = an−2 = 1, and ab = (1 2 . . . n) so
(ab)n = 1. Moreover x−1bx = (1 2 3x) for all x ∈ ((An)1)2 so ba−kbak =

(
1 3a

k
)
(2 3)

has order 2 for all k ∈
{
1, 2, . . . , n−3

2

}
. If n is odd, it follows that a and b satisfy the

presentation for An given in Theorem 3.2.1.
Otherwise, relabel a = (1 2) (3 4 . . . n) . Then b3 = an−2 = 1, and ab = (1 3 4 . . . n)

so (ab)n−1 = 1. The remaining relations are satisfied by a and b, since the effect of (1 2)

3.2. PRESENTATIONS FOR THE ALTERNATING GROUPS 25

is to invert each b conjugated by odd powers of a, and this is cancelled by inverting the
leading b.
By another application of von Dyck’s theorem and the fact that An is simple, there
exists an isomorphism ψ : F/N → 〈a, b〉 which maps Ny 7→ a and Nz 7→ b. It follows
that φ−1ψ is an isomorphism which maps s 7→ a and t 7→ b.

In order to make use of these presentations, we need algorithms to check whether they
are satisfied by a given pair of generators. It should be clear that the following two
algorithms fit this purpose.

Algorithm 2 CheckOddGenerators (n, s, t) .

1: if t3 6= 1 or sn−2 6= 1 or (st)n 6= 1 then
2: return false;
3: else
4: g1 := t;

5: g2 := t;

6:

7: for k := 1 to n−3
2 do

8: g1 := g1s;

9: g2 := g2s
−1;

10:

11: if (g2g1)2 6= 1 then
12: return false;
13: end if;
14: end for;
15:

16: return true;
17: end if;

Lemma 3.2.4. Let G be a group. Given odd n ∈ P with n ≥ 4 and s, t ∈ G with
〈s, t〉 6= 1, Algorithm 2 determines whether s and t are alternating n-generators within
G.

Proof. Follows from Lemma 3.2.3.

26 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF An AND Sn

Algorithm 3 CheckEvenGenerators (n, s, t) .

1: if t3 6= 1 or sn−2 6= 1 or (st)n−1 6= 1 then
2: return false;
3: else
4: g1 := t;

5: g2 := 1;

6: p := 1;

7:

8: for k := 1 to n−2
2 do

9: g1 := g1s;

10: g2 := g2s
−1;

11: p := −p;
12:

13: if (tpg2g1)2 6= 1 then
14: return false;
15: end if;
16: end for;
17:

18: return true;
19: end if;

3.3. COMPUTING THE INVERSE IMAGE OF A PERMUTATION 27

Lemma 3.2.5. Let G be a group. Given even n ∈ P with n ≥ 4 and s, t ∈ G with
〈s, t〉 6= 1, Algorithm 3 determines whether s and t are alternating n-generators within
G.

Proof. Follows from Lemma 3.2.3.

3.3 Computing the inverse image of a permutation

Given alternating n-generators s and t within a black-box group G, we know there
exists an associated isomorphism θ : 〈s, t〉 → An, but have no method of computing
it. However, we are able to write every permutation a ∈ An as a word in sθ and tθ

involving only products and inverses. Since θ is an isomorphism, and we can compute
products and inverses in G, the corresponding word in s and t evaluates to aθ−1

. Before
describing this algorithm in detail, we present a simple variant which works for Sn
rather than An. This is useful if G is isomorphic to Sn, and helps to illustrate the main
idea of the corresponding procedure for An.

Definition 3.3.1. Let n ∈ P with n ≥ 3. The standard generators for Sn are (1 2 . . . n)

and (1 2) . If G is a group and s, t ∈ G are such that there exists an isomorphism
θ : 〈s, t〉 → Sn with sθ = (1 2 . . . n) and tθ = (1 2) , then s and t are symmetric
n-generators within G.

Lemma 3.3.2. Let G be a group. Given n ∈ P with n ≥ 3, symmetric n-generators
s′ and t′ within G, and a ∈ Sn, Algorithm 4 returns aθ−1

, where θ : 〈s′, t′〉 → Sn is the
isomorphism associated with s′ and t′.

Proof. Let X be the cycle structure of a. Define a relation � on X ×X by x � y if
and only if the least element of supp (x) is at most that of supp (y) . Then � is a total
ordering on X, which may be listed in order as x1, x2, . . . , xm, where m := |X| . If x ∈ X

then x = (i j1 j2 . . . jk) for some k ∈ P and j1, j2, . . . jk ∈ Pn, where i is the least
element of supp (x) , and hence x = (i j1) (i j2) . . . (i jk) . Thus we aim to express (i j)

as a word in sθ and tθ, for each pair i, j ∈ Pn with i < j.

The outer loop searches from 1 to n−1 for i ∈ supp (a) . This has the effect of traversing
the list x1, x2, . . . , xm. It is not necessary to consider i = n, because either n ∈ fix (a)

or n ∈ supp (x) for some x ∈ X, in which case there is a smaller number in supp (x) .

28 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF An AND Sn

Algorithm 4 PermutationToElement (n, s′, t′, a) .

1: g := 1;

2: s := s′t′; . s = (2 3 . . . n)

3: t := t′; . t = (1 2)

4:

5: for i := 1 to n− 1 do
6: j := i;

7: k := ja;

8:

9: while j 6= k do
10: h := ts

k−i−1
; . h = (i k)

11: g := gh;

12:

13: a := a (j k) ;

14: j := k;

15: k := ja;

16: end while;
17:

18: t := ts
′
;

19: s := st;

20: end for;
21:

22: return g;

3.3. COMPUTING THE INVERSE IMAGE OF A PERMUTATION 29

If supp (a) = ∅, then aθ
−1

= 1, and the algorithm returns g = 1. Otherwise it finds
the smallest i ∈ supp (x1) , and the inner loop runs through successive images k of i
under x1. This loop attempts to construct h ∈ G such that hθ = (i k) . Once found, g
is multiplied by h. At the end a is adjusted to fix j := kx

−1
1 , and the cycle in a which

was (j k . . .) becomes (k . . .) , or 1 if kx1 = i. This ensures that the loop terminates
at the appropriate time and members of supp (x1) are not encountered again by the
outer loop. If kx1 6= i, the new cycle (k . . .) maps k to the same point as x1. Once the
inner loop has finished gθ = x1, and a = x2x3 . . . xm fixes every point preceding i, so by
induction it remains to show that line 10 is correct.
We claim that, during each pass i ∈ Pn−1 of the outer loop, sθ = ((i+ 1) (i+ 2) . . . n)

and tθ = (i (i+ 1)) .1 Since s = s′t′ and t = t′ initially, this is clear for the case
i = 1. Suppose it also holds for some i ∈ Pn−2. Then tθ = (i (i+ 1))(1 2 ... n) =

((i+ 1) (i+ 2)) in pass i+1 of the outer loop, and hence sθ = ((i+ 1) (i+ 2) . . . n) tθ =

((i+ 2) (i+ 3) . . . n) . By induction, this proves the claim. Therefore
(
ts

k−i−1
)θ

=(
i (i+ 1)s

k−i−1
)
= (i k) for all i, k ∈ Pn with i < k, so h is assigned to the correct

element of G on line 10.

Theorem 3.3.3. Let G be a group. Given n ∈ P with n ≥ 4, alternating n-generators
s and t within G, and a ∈ An, Algorithm 5 returns aθ−1

, where θ : 〈s, t〉 → An is the
isomorphism associated with s and t.

Proof. Let X be the cycle structure of a, and list X in the order described in the proof
of Lemma 3.3.2 as x1, x2, . . . , xm, where m := |X| . Again we decompose a as a product
of 2-cycles, but are no longer able to reconstruct an individual 2-cycle within G. By
Lemma 1.3.8 this decomposition has an even number of 2-cycles, so we may insert
((n− 1) n) (n (n− 1)) between every second pair of 2-cycles. We now aim to express
(i j) ((n− 1) n) , or its inverse, as a word in sθ and tθ for all i, j ∈ Pn with i < j.

First, we comment on some differences from the approach taken by Algorithm 4. The
outer loop need not consider i ∈ {n− 1, n} unless xm = ((n− 1) n) , which only
contributes (n (n− 1))xm = 1 to a. Each time a 2-cycle from a is processed, the variable
p switches from 1 to 2 or vice-versa. This keeps track of whether the next 2-cycle y
from a should have ((n− 1) n) on its right or left, which dictates whether we aim to

1For simplicity, we adopt the convention that (n) = 1 in the expression for sθ.

30 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF An AND Sn

Algorithm 5 EvenPermutationToElement (n, s, t, a) .

1: g := 1;

2: p := 1;

3: q := 1 + (n mod 2) ;

4:

5: for i := 1 to n− 2 do
6: j := i;

7: k := ja;

8:

9: while j 6= k do
10: if i = n− 2 then
11: if k = n then
12: h := tp; . t = ((n− 2) (n− 1) n)

13: else
14: h := t3−p; . t2 = ((n− 1) (n− 2) n)

15: end if;
16: else if k ≤ n− 2 then
17: h1 :=

(
ts

n−i−3
)p

; . ts
n−i−3

= (i (i+ 1) (n− 1))

18: h2 := (hs1)
q ; .

(
ts

n−i−2
)q

= ((i+ 1) i n)

19: h := h2h1h2;

20:

21: if k > i+ 1 then
22: c := ts

k−i−2
;

23: if IsOdd (k − i) then
24: h := hc

q
; . cq = (i k (i+ 1))

25: else
26: h := hc

2
; . c2 = (i k (i+ 1))

27: end if;
28: end if;
29: else
30: h1 := ts

n−i−3
; . h1 = (i (i+ 1) (n− 1))

31: h2 := hs1; . hq2 = ((i+ 1) i n)

3.3. COMPUTING THE INVERSE IMAGE OF A PERMUTATION 31

Algorithm 5 EvenPermutationToElement (n, s, t, a) (continued).
32: if k < n xor p 6= 1 then
33: h := hq2h1;

34: else
35: h := h21h

3−q
2 ;

36: end if;
37: end if;
38:

39: g := gh;

40: p := 3− p;

41:

42: a := a (j k) ;

43: j := k;

44: k := ja;

45: end while;
46:

47: if q 6= 1 then
48: t := tst;

49: s := st;

50: else
51: u := st;

52: t := t2;

53: u := tu;

54: s := stu2;

55: t := u;

56: end if;
57:

58: q := 3− q;

59: end for;
60:

61: return g;

32 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF An AND Sn

express y ((n− 1) n) or its inverse as a word in sθ and tθ. The exponent p is only ever
used on 3-cycles, so the value 2 is equivalent to −1 (in tests, squaring a matrix was
faster than computing its inverse). A similar equivalence holds for the variable q, which
is 1 if and only if n− i is odd.
We claim that, during each pass i ∈ Pn−2 of the outer loop, tθ = (i (i+ 1) (i+ 2))

and2

sθ =

((i+ 2) (i+ 3) . . . n) , if q 6= 1,

(i (i+ 1)) ((i+ 2) (i+ 3) . . . n) , otherwise.

Since s and t are alternating n-generators, and q initially describes whether n is odd or
even, this is clear for the case i = 1. Suppose it also holds for some i ∈ Pn−3. Further,
suppose that q 6= 1 in pass i of the outer loop. Then q = 1 in pass i+ 1 of the outer
loop, and

tθ = (i (i+ 1) (i+ 2))((i+2) (i+3) ... n)(i (i+1) (i+2)) = ((i+ 1) (i+ 2) (i+ 3))

as required. Similarly

sθ = ((i+ 2) (i+ 3) . . . n) tθ = ((i+ 1) (i+ 2)) ((i+ 3) (i+ 4) . . . n) .

Otherwise q = 1 in pass i of the outer loop, so q 6= 1 in pass i+ 1 and

tθ = ((i+ 1) i (i+ 2))(i (i+1))((i+2) (i+3) ... n)(i (i+1) (i+2)) = ((i+ 1) (i+ 2) (i+ 3)) ,

as required. Moreover

sθ = (i (i+ 1)) ((i+ 2) (i+ 3) . . . n) ((i+ 1) i (i+ 2))
(
t2
)θ

= ((i+ 3) (i+ 4) . . . n) .

By induction, this proves the claim.
Now let i, k ∈ Pn with i < k. Suppose that i = n− 2, so that k ∈ {n− 1, n} . If k = n,

then (i k) ((n− 1) n) = ((n− 2) (n− 1) n) , which is equal to tθ in pass i of the loop.
As a 3-cycle, raising this to the power of p will result in ((n− 1) n) (i k) if necessary.
Similarly, if k = n − 1 then (i k) ((n− 1)n) = ((n− 2) n (n− 1)) and we take the
opposite power.

2Again we adopt the convention that (n) = 1 in the expressions for sθ.

3.4. DETERMINING THE IMAGE A BLACK-BOX GROUP ELEMENT 33

Otherwise, suppose that k ≤ n− 2. Then
(
ts

n−i−3
)θ

= (i (i+ 1) (n− 1)) , since q = 1

only when n− i− 3 is even and hence
(
sn−i−3

)θ always fixes i and i+ 1. Conjugating
this 3-cycle by s and raising to the power q gives ((i+ 1) i n) , and hence hθ is either

((i+ 1) i n) (i (i+ 1) (n− 1)) ((i+ 1) i n) = (i (i+ 1)) ((n− 1) n)

or its inverse, depending on the value of p (since (h2h1h2)
−1 = h−1

2 h−1
1 h−1

2). To
reach (i k) ((n− 1) n) we conjugate this by (i k (i+ 1)) , which is either (cq)θ or

(
c2
)θ

depending on whether k − i is odd or even.
Lastly k ∈ {n− 1, n} . As in the previous case, (hq2h1)

θ
= (i n (n− 1)) . This is either

(i k) ((n− 1) n) or its inverse, depending on whether k is n− 1 or n.

3.4 Determining the image a black-box group element

Computing the inverse image of a permutation is relatively straightforward because we
can use the structure of the input permutation to our advantage. This approach is not
available for the other direction, but we can build up knowledge about an element of a
black-box group by manipulating it within the group. In particular, by evaluating the
commutator of two elements we can determine whether the supports of their images
intersect. This is especially useful if one of their images is already known. With this
in mind, we describe algorithms which compute the inverse images of a variety of
permutations within a black-box group.

Definition 3.4.1. Let n, k ∈ P with n ≥ 4 and k ≤ n − 2. If s, t are alternating
n-generators within some group G, with associated isomorphism θ : 〈s, t〉 → An, then
the initial k elements of 〈s, t〉 are t = (1 2 3)θ

−1

, (1 2 4)θ
−1

, . . . , (1 2 (k + 2))θ
−1

.

Lemma 3.4.2. Let n ∈ P with n ≥ 5. If x, y ∈ An are respectively a 3-cycle and a
5-cycle, then supp (x) ∩ supp (y) = ∅ if and only if [x, y] = 1. Hence, if G is a group
and g, h ∈ G are such that there exists a monomorphism θ : G→ Sn under which gθ is
a 3-cycle and hθ is composed of disjoint 5-cycles, then supp

(
gθ
)
∩ supp

(
hθ
)
= ∅ if and

only if [g, h] = 1.

Proof. If supp (x)∩ supp (y) = ∅, it is clear that xy = yx. Conversely, suppose that the
supports of x and y intersect at some i ∈ Pn. Since |supp (y) \ supp (x)| ≥ 2, we may
choose i with iy /∈ supp (x) . Then iyx = iy 6= ixy because i 6= ix, so [x, y] 6= 1.

34 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF An AND Sn

Algorithm 6 DomainCover (n, s, t, E) .

1: k := bn/5c ;
2: m := blog2 (k)c+ 1;

3:

4: a := E1E
2
2E3; . a = (1 2 3 4 5)

5: X :=

a, if m ≤ j < 2m

1, otherwise


∣∣∣∣∣∣ j ∈ [1, . . . , 2m]

 ;

6:

7: a := E4E
2
5E6E

2
7E8E

2
4 ; . a = (6 7 8 9 10)

8:

9: for i := 2 to k do
10: for j := 1 to m do
11: if BitwiseAnd

(
i, 2m−j

)
6= 0 then

12: Xj := Xja;

13: else
14: Xm+j := Xm+ja;

15: end if;
16: end for;
17:

18: a := as
5
; . a = ((5i+ 1) (5i+ 2) (5i+ 3) (5i+ 4) (5i+ 5))

19: end for;
20:

21: return X;

3.4. DETERMINING THE IMAGE A BLACK-BOX GROUP ELEMENT 35

Lemma 3.4.3. Let G be a group and n ∈ P with n ≥ 10. Define k = bn/5c and for
each i ∈ Pk define xi = ((5i− 4) (5i− 3) (5i− 2) (5i− 1) (5i)) ∈ An. Let m be the
number of bits required to store k. Given n, alternating n-generators s and t within G,
and a list E of the initial 8 elements of 〈s, t〉 , Algorithm 6 returns a list X containing
2m elements of 〈s, t〉 . The cycle structure of the image of Xj in An is contained in
{xi | i ∈ Pk} for all j ∈ P2m. If i ∈ Pk and j ∈ Pm, then the image of Xj contains xi if
and only if the jth most significant bit of i among the lowest m is 1, and the image of
Xj+m contains xi if and only if this bit is 0.

Proof. Clearly blog2 (k)c+1 is the number of bits required to store k. Let θ : 〈s, t〉 → An

be the isomorphism associated with s and t. After line 4

aθ =
(
E1E

2
2E3

)θ
= (1 2 3) (1 4 2) (1 2 5) = (1 2 3 4 5) = x1,

and Xθ
m is the only element of X among the first m which contains x1. Every time X is

modified, a cycle is added to exactly one of Xj or Xj+m for each j ∈ Pm. After line 7

aθ =
(
E4E

2
5E6E

2
7E8E

2
4

)θ
= (1 2 6) (1 7 2) (1 2 8) (1 9 2) (1 2 10) (1 6 2)

= (6 7 8 9 10) = x2,

and following this, conjugating by s5 maps aθ to the next member of {xi | i ∈ Pk} . The
if statement ensures that the correct relationship holds between the cycle structure of
the images of members of X and the binary expansion of elements of Pk.

Algorithm 7 ConjugateMap (s, t, i, j) .

1: if i < 3 then
2: if j < 3 then
3: return tj−i;

4: else
5: return t3−isj−3;

6: end if;
7: else
8: return sj−i;

9: end if;

36 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF An AND Sn

Lemma 3.4.4. Let G be a group and n ∈ P with n ≥ 4. Given alternating n-generators
s and t within G, and i, j ∈ Pn such that i ≤ j, Algorithm 7 returns c ∈ 〈s, t〉 such that
ic

θ
= j, where θ : 〈s, t〉 → An is the isomorphism associated with s and t.

Proof. If i ≤ j < 3 then either i = j or i = 1 and j = 2. In either case the image of tj−i

maps i 7→ j. Otherwise j ≥ 3. If i < 3 then the images of t3−i and sj−3 respectively map
i 7→ 3 and 3 7→ j so their composition maps i 7→ j. Otherwise 3 ≤ i ≤ j and

(
sj−i

)θ
maps i 7→ j.

Lemma 3.4.5. Let G be a group and n ∈ P with n ≥ 4. If G is isomorphic to
Sn, and s, t ∈ G are alternating n-generators within G, with associated isomorphism
θ : 〈s, t〉 → An, there exists an isomorphism θ′ : G → Sn such that gθ′ = gθ for all
g ∈ 〈s, t〉 .

Proof. Let φ : G → Sn be an isomorphism. Then θ−1φ ∈ Aut (An) , so if n 6= 6 there
exists c ∈ Sn such that aθ−1φ = ac for all a ∈ An. Define θ′ : G → Sn by gθ′ = cgφc−1

for all g ∈ G. Then θ′ is clearly an isomorphism, and for all g ∈ 〈s, t〉

gθ
′
= cgφc−1 = c

(
gθθ

−1
)φ
c−1 = c

(
gθ
)θ−1φ

c−1 = c
(
gθ
)c
c−1 = gθ.

If n = 6, then some members of Aut (An) do not correspond to inner automorphisms of
Sn. However, these so-called exceptional automorphisms are just restrictions of those
for S6. Hence there exists ψ ∈ Aut (Sn) such that ψ|An

= θ−1φ, and we may proceed as
above to show that θ′ := φψ−1 is an isomorphism from G→ Sn such that gθ′ = gθ for
all g ∈ 〈s, t〉 .

Definition 3.4.6. Let n ∈ N with n ≥ 5, and l ∈ Pn. If P ⊆ Pn contains l and |P | = 5,

a 3-combination of points about l is a list consisting of all 3-element subsets of P,
with no duplicates. Let s, t be alternating n-generators within some group G, and let
θ : 〈s, t〉 → An be the associated isomorphism. A 3-combination of cycles about l is a
list of elements of 〈s, t〉 , each of which maps to a 3-cycle under θ, such that the list of
the supports of these 3-cycles is a 3-combination of points about l (with no duplicates).

Example 3.4.7. Every list of the 3-element subsets of P5 is a 3-combination of points
about 1. A corresponding 3-combination of cycles about 1 in A5 is

(1 2 3) , (1 2 4) , (1 2 5) , (1 3 4) , (1 3 5) , (1 4 5) , (2 3 4) , (2 3 5) , (2 4 5) , (3 4 5) .

3.4. DETERMINING THE IMAGE A BLACK-BOX GROUP ELEMENT 37

Algorithm 8 ElementImage (n, s, t, E,X, S, T, l, g) .

1: m := |X| /2;
2: i := 0;

3:

4: for j := 1 to m do
5: for k := 1 to |T | do
6: if

[
Xj , T

g
k

]
= 1 then

7: b := 0;

8: k′ := k;

9: break;
10: else if

[
Xj+m, T

g
k

]
= 1 then

11: b := 1;

12: k′ := k;

13: break;
14: end if;
15: end for;
16:

17: if l /∈ Sk′ then
18: for k := 1 to |T | do
19: if Sk \ Sk′ = {l} then
20: k′′ := k;

21: break;
22: end if;
23: end for;
24: if

[
Xj+bm, T

g
k′′
]
6= 1 then

25: b := 1− b;

26: end if;
27: end if;
28:

29: i := 2i+ b;

30: end for;

38 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF An AND Sn

Algorithm 8 ElementImage (n, s, t, E,X, S, T, l, g) (continued).
31: J := [n+ 1− (n mod 5) , . . . , n] ;

32: if 0 < i and 5i ≤ n then
33: J := [5i+ j | j ∈ [−4, . . . , 0]] ∪ J ;
34: end if;
35:

36: C :=
[
E1, E

2
2E3, E

2
4E5, E

2
6E7, E

2
8E9

]
; . Ci = (1 (2i) (2i+ 1))

37: i := 1;

38:

39: c := ConjugateMap (s, t, 1, l) ;

40: H :=
[
Ccg
k | k ∈ [1, 2]

]
;

41:

42: for j ∈ J do
43: c := ConjugateMap (s, t, i, j) ;

44: i := j;

45: for k := 1 to |C| do
46: Ck := Cc

k;

47: end for;
48:

49: N := [0, 0] ;

50: for h ∈ C do
51: for k := 1 to 2 do
52: if [h,Hk] = 1 then
53: if Nk ≥ 1 then
54: continue j;
55: end if;
56: Nk := Nk + 1;

57: end if;
58: end for;
59: end for;
60:

61: return j;

62: end for;

3.4. DETERMINING THE IMAGE A BLACK-BOX GROUP ELEMENT 39

Theorem 3.4.8. Let G be a group isomorphic to either An or Sn for some n ∈ P with
n ≥ 11. Given n, alternating n-generators s and t within G, a list E of the initial 9
elements of 〈s, t〉 , the list X returned by Algorithm 6, a point l ∈ Pn, an element g ∈ G

and 3-combinations S and T of points and cycles about l, Algorithm 8 returns the
image of l under gθ, where θ : G → Sn is the monomorphism determined by s and t

(via Lemma 3.4.5 if G ' Sn).

Proof. The first stage of the algorithm narrows down the range in which lg
θ can lie to

at most 9 elements of Pn, using the list X. Let k = bn/5c and m be the number of
bits required to store k. By Lemma 3.4.3, m is initialised correctly on line 1. Suppose
there exists i ∈ Pk such that lgθ ∈ {5i− 4, 5i− 3, . . . , 5i} . We claim that, by line 31,
the algorithm has computed this value of i. Since i ≤ k has at most m non-zero bits,
it suffices to show that the number b produced in pass j of the loop is the jth most
significant bit of i among the lowest m.
Let P ⊆ Pn be the 5-element set associated with S. The supports of Xθ

j and Xθ
j+m

are disjoint, so one must contain less than 3 points of P ′ := P gθ . Hence there exists a
3-element subset Q ⊆ P ′ which is fixed pointwise by Xθ

j or Xθ
j+m. Since Q

(
gθ

)−1

is a
3-element subset of P, it is the support of T θ

k′ for some k′ ∈ P10. It follows that
(
T g
k′
)θ

has support Q, so it commutes with one of Xθ
j or Xθ

j+m. This ensures that k′ is actually
defined on line 17.
If l ∈ Sk′ = supp

(
T θ
k′
)

then lgθ ∈ supp
((
T g
k′
)θ)

. By Lemma 3.4.2, this implies that lgθ

lies outside the support of either Xθ
j or Xθ

j+m, whichever one commutes with
(
T g
k′
)θ
.

Assuming that lgθ ≤ 5 bn/5c , it follows by Lemma 3.4.3 that b is defined correctly on
lines 7 and 11. Otherwise, we search for k′′ ∈ P10 such that l ∈ Sk′′ and the other
elements of Sk′′ also lie in Sk′ . This exists because S is a 3-combination of points about
l. If T g

k′′ commutes with Xj+bm (as T g
k′ did), then b is (correctly) defined in the same

way as it was for the case l ∈ Sk′ . Otherwise, the failure of T g
k′′ to commute with Xj+bm

implies that lgθ lies in the support of Xj+bm, so by Lemma 3.4.3 the value of b should
be (and is) reversed.
Therefore i is correctly computed provided that lgθ ≤ 5k. If this is not the case, then the
computed value of i may not make sense (in particular, it might be 0). This possibility is
excluded by the if statement on line 32, after which J is guaranteed to contain lgθ . Next,
the algorithm computes the inverse images under θ of (1 2 3) , (1 4 2) (1 2 5) = (1 4 5) ,

40 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF An AND Sn

(1 6 2) (1 2 7) = (1 6 7) , (1 8 2) (1 2 9) = (1 8 9) and (1 10 2) (1 2 11) = (1 10 11) .

The intersection of the supports of each pair of these cycles is {1} . By Lemma 3.4.4,
the supports of Hθ

1 = (1 2 3)(cg)
θ

and Hθ
2 = (1 4 5)(cg)

θ

intersect only at lgθ . Moreover,
when the list is updated in pass j of the following loop, the supports of each pair of
cycles intersect only at j.
Finally, the algorithm tests every point j ∈ J to check whether lgθ = j. If lgθ = j, then
H1 and H2 each commute with at most one member of C, as this only occurs when the
supports of their images are equal. Conversely, suppose that each of H1 and H2 commute
with at most one member of C. Then at least four members of C do not commute with
H1, which is not possible unless j ∈ supp

(
Hθ

1

)
, by the pigeonhole principle. A similar

argument implies that j ∈ supp
(
Hθ

2

)
, and hence j ∈ supp

(
Hθ

1

)
∩ supp

(
Hθ

2

)
. Therefore

j = lg
θ
, which shows that the algorithm returns j if and only if j = lg

θ
.

Corollary 3.4.9. Let G be a group isomorphic to either An or Sn for some n ∈ P with
n ≥ 11. Given n, alternating n-generators s and t within G, a list E of the initial 9
elements of 〈s, t〉 , the list X returned by Algorithm 6, and g ∈ G, Algorithm 9 returns
the list 1gθ , 2gθ , . . . , ngθ , where θ : G→ Sn is the monomorphism determined by s and t.

Proof. It suffices to show that the lth call to Algorithm 8 is passed a pair of 3-
combinations of points and cycles about l. The first pair calculated is for l = 3,

which is correct because the nested loops traverse each subset {i, j, k} ⊆ P5 exactly
once, and(

EjE
2
kEiE

2
j

)θ
= (1 2 (j + 2)) (2 1 (k + 2)) (1 2 (i+ 2)) (2 1 (j + 2))

= ((i+ 2) (j + 2) (k + 2))

for all i, j, k ∈ P5 with i < j < k. For l = 1, the cycles computed map under θ to

(1 2 3) , (1 2 4) , (1 2 5) , (1 3 2) (1 2 4) = (1 3 4) , (1 3 2) (1 2 5) = (1 3 5) ,

(1 4 2) (1 2 5) = (1 4 5) , (1 2 3) (1 4 2) = (2 3 4) , (1 2 3) (1 5 2) = (2 3 5) ,

(1 2 4) (1 5 2) = (2 4 5) , (1 2 4) (1 5 2) (1 2 3) (1 4 2) = (3 4 5) .

This reproduces Example 3.4.7. When l = 2 each point is increased by one, since

(1 2 3) (1 5 2) = (2 3 5) , (1 2 4) (1 6 2) = (2 4 6) , (1 2 5) (1 6 2) = (2 5 6) ,

3.4. DETERMINING THE IMAGE A BLACK-BOX GROUP ELEMENT 41

Algorithm 9 ElementToPermutation (n, s, t, E,X, g) .

1: S := [] ;

2: T := [] ;

3:

4: for i := 1 to 5 do
5: for j := i+ 1 to 5 do
6: for k := j + 1 to 5 do
7: h := EjE

2
kEiE

2
j ; . h = ((i+ 2) (j + 2) (k + 2))

8: Append (S, {i+ 2, j + 2, k + 2}) ;
9: Append (T, h) ;

10: end for;
11: end for;
12: end for;
13:

14: T ′ :=
[
E1, E2, E3, E

2
1E2, E

2
1E3, E

2
2E3, E1E

2
2 , E1E

2
3 , E2E

2
3 , T1

]
;

15: S′ := [{j − 2 | j ∈ J} | J ∈ S] ;

16: L := [ElementImage (n, s, t, E,X, S′, T ′, 1, g)] ;

17:

18: T ′ :=
[
E1E

2
2 , E1E

2
3 , E1E

2
4 , E2E

2
3 , E2E

2
4 , E3E

2
4 , T1, T2, T4, T7

]
;

19: S′ := [{j − 1 | j ∈ J} | J ∈ S] ;

20: Append (L,ElementImage (n, s, t, E,X, S, T ′, 2, g)) ;

21:

22: for l := 3 to n do
23: Append (L,ElementImage (n, s, t, E,X, S, T, l, g)) ;

24: if l ≡ 2 mod 5 then
25: m := min {n− l, 5} ;
26: for i := 1 to |T | do
27: Si := {j +m | j ∈ Si} ;
28: Ti := T sm

i ;

29: end for;
30: end if;
31: end for;
32:

33: return L;

42 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF An AND Sn

and the other cycles have been calculated earlier. For larger values of l we increase each
number in the point sets by 5 when needed, and conjugate the cycles by

(
s5
)θ
, which

has the same effect on their supports. A smaller number is used if they would end up
outside Pn.

3.5 Permutation groups of small degree

The algorithms of the previous section are closely based on those found in [6]. They
only work for permutation groups of degree at least 11 (although the authors incorrectly
claim that they are valid for degrees between 7 and 10). Indeed, the second part of
Algorithm 8 constructs five 3-cycles whose supports intersect pairwise at a single point.
We replace this part with a method which works for groups of smaller degree. However,
it is not as efficient, so the original algorithm should still be used if the given degree is
at least 11. This efficiency loss is mitigated for groups of small degree because the first
part of Algorithm 8 is no longer necessary.
The new algorithm is similar, in that it evaluates commutators to extract information
about the supports of permutations. Since groups of small degree (particularly A5)
contain relatively few 3-cycles which commute with each other, it helps to have additional
information about the supports of those with a non-trivial commutator.

Lemma 3.5.1. Let n ∈ P with n ≥ 3, and x, y ∈ Sn be 3-cycles. If [x, y] = 1

then supp (x) and supp (y) are either disjoint or equal. Otherwise, if [x, y]2 = 1 then
supp (x)∩supp (y) intersect at exactly 2 points. If [x, y]2 6= 1 then |supp (x) ∩ supp (y)| =
1.

Proof. If x and y are disjoint, then they clearly commute. Suppose that supp (x) =

supp (y) , and write x = (i j k) for some i, j, k ∈ Pn. Then y ∈ {(i j k) , (i k j)} , so
[x, y] = 1. Otherwise supp (x) and supp (y) intersect in at most 2 points. Suppose there
exist distinct i, j ∈ supp (x) ∩ supp (y) . Without loss of generality write x = (i j k) for
some k ∈ Pn. Then y = (i j l) or y = (i l j) for some l ∈ Pn with l 6= k. In the first case

[x, y] = (i k j) (i l j) (i j k) (i j l) = (i j) (k l) ,

and in the second

[x, y] = (i k j) (i j l) (i j k) (i l j) = (i l) (j k) .

3.5. PERMUTATION GROUPS OF SMALL DEGREE 43

Therefore [x, y]2 = 1, but [x, y] 6= 1. Otherwise there is a unique i ∈ supp (x)∩ supp (y) .

Write x = (i j k) and y = (i l m) for some j, k, l,m ∈ Pn with {j, k}∩{l,m} = ∅. Then

[x, y] = (i k j) (i m l) (i j k) (i l m) = (i l j) ,

so [x, y] 6= 1 6= [x, y]2 . This completes the proof, as every case has been considered.

Theorem 3.5.2. Let G be a group isomorphic to either An or Sn for some n ∈ P with
n ≥ 5. Given n, alternating n-generators s and t within G, a list E of the initial 3
elements of 〈s, t〉 , and g ∈ G, Algorithm 10 returns 1g

θ
, 2g

θ
, . . . , ng

θ
, where θ : G→ Sn

is the monomorphism determined by s and t.

Proof. As shown in Corollary 3.4.9, the list T reproduces Example 3.4.7. For reference,

(1 2 3) , (1 2 4) , (1 2 5) , (1 3 4) , (1 3 5) , (1 4 5) , (2 3 4) , (2 3 5) , (2 4 5) , (3 4 5) ,

are the respective images of each member of T under θ. Therefore, in pass l of the
outer loop, Hθ

1 and Hθ
2 are 3-cycles whose supports intersect only at l. In pass j of the

next loop cθ maps 1 7→ j, by Lemma 3.4.4. So lg
θ ∈ supp

(
hθ1
)

and j ∈ supp
(
hθ2
)

at
line 21. At this point, we aim to determine whether j ∈ supp

(
hθ1
)
. If this holds for

all h1 ∈ {Hg
1 ,H

g
2} , then lg

θ
= j, since the supports of Hθ

1 and Hθ
2 intersect only at l.

Otherwise, it is clear that lgθ 6= j.

Clearly j ∈ supp
(
hθ1
)

whenever h1 ∈
{
h2, h

2
2

}
. If hθ1 commutes with hθ2, but is not

equal to hθ2 or its inverse
(
h22
)θ, then by Lemma 3.5.1 j /∈ supp

(
hθ1
)
. In this case the

algorithm moves on to test the next value of j. Otherwise, Lemma 3.5.1 is applied to
determine the size Sk of supp

(
hθ1
)
∩ supp

(
hθ2
)
, where h2 = T c

5k−4 is one of T c
1 or T c

6 .

If S1 = S2 = 2, then j ∈ supp
(
hθ1
)
, since the supports of (T c

1)
θ and (T c

6)
θ each contain

two points apart from j, all four of which will lie in supp
(
hθ1
)

unless j ∈ supp
(
hθ1
)
.

Suppose that S1 = S2 = 1. If j ∈ supp
(
hθ1
)
, then j is the only point at which supp

(
hθ1
)

intersects the support of (T c
k)

θ for each k ∈ {2, 3, 4, 5} . Therefore none of T c
2 , T

c
3 , T

c
4

or T c
5 commute with h1. Conversely, if j /∈ supp

(
hθ1
)
, then one other point from the

supports of each of (T c
1)

θ and (T c
6)

θ lies outside supp
(
hθ1
)
, and together these form

the support of (T c
k)

θ for some k ∈ {2, 3, 4, 5} . This permutation will commute with hθ1,

and the algorithm will move on once it is found. Otherwise S1 6= S2, so Sk = 2 and
S3−k = 1 for some k ∈ {1, 2} . Let t1 = T5k−4 an t2 = T5(3−k)−4. Then m is defined so

44 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF An AND Sn

Algorithm 10 ElementToSmallDegreePermutation (n, s, t, E, g) .

1: T :=
[
E1, E2, E3, E

2
1E2, E

2
1E3, E

2
2E3, E1E

2
2 , E1E

2
3 , E2E

2
3 , E2E

2
3E1E

2
2

]
;

2:

3: L := [] ;

4: H := [T1, T6] ; . H = [(1 2 3) , (1 4 5)]

5:

6: for l := 1 to n do
7: for j := 1 to n do
8: if j = 1 then
9: c := 1;

10: else
11: h := ConjugateMap (s, t, j − 1, j) ;

12: c := ch;

13: end if;
14:

15: for i := 1 to |H| do
16: h1 := Hg

i ;

17: S := [1, 1] ;

18:

19: for k := 1 to |S| do
20: h2 := T c

5k−4;

21:

22: if h2h1 = 1 or h22h1 = 1 then
23: continue i;
24: else if [h1, h2] = 1 then
25: continue j;
26: else if [h1, h2]2 = 1 then
27: Sk := 2;

28: end if;
29: end for;

3.5. PERMUTATION GROUPS OF SMALL DEGREE 45

Algorithm 10 ElementToSmallDegreePermutation (n, s, t, E, g) (continued).
30: if S1 = S2 then
31: if S1 = 1 then
32: for k := 2 to 5 do
33: if [h1, T c

k] = 1 then
34: continue j;
35: end if;
36: end for;
37: end if;
38: else

39: m :=

6, if S1 > S2

8, otherwise

 ;

40: for k := 1 to 2 do
41: if

[
h1, T

c
m+k

]
= 1 then

42: continue j;
43: end if;
44: end for;
45: end if;
46: end for;
47:

48: Append (L, j) ;

49: break;
50: end for;
51:

52: c := ConjugateMap (s, t, l, l + 1) ;

53: for i := 1 to |H| do
54: Hi := Hc

i ;

55: end for;
56: end for;
57:

58: return L;

46 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF An AND Sn

that
(
T c
m+1

)θ and
(
T c
m+2

)θ fix j and have supports which consist of two points from
supp

(
tθ1
)

and one from supp
(
tθ2
)
. To check this, see Example 3.4.7. If j ∈ supp

(
hθ1
)
,

then exactly one of these points lies in supp
(
hθ1
)
, and neither T c

m+1 nor T c
m+2 commute

with h1. Otherwise j /∈ supp
(
hθ1
)
, and hence the support of either

(
T c
m+1

)θ or
(
T c
m+2

)θ
is exactly supp

(
hθ1
)
. One of these permutations will commute with hθ1, and the algorithm

will continue when it is found.
If the end of the loop over i is reached, then one of the above conditions has ensured
that j ∈ supp

(
hθ1
)

for h1 = Hg
1 and h1 = Hg

2 , and hence lgθ = j. This information is
added to the list L, which is returned once complete.

3.6 Finding alternating generators

The algorithms of the previous two sections can be used to answer questions about
a black-box group G isomorphic to An or Sn, for some given degree n ∈ P. In order
to apply them, we need alternating n-generators within G. The following algorithms
are a significant step towards a general method for constructing them. However, they
only work when provided with certain cycles as input. These algorithms are described
in [6], but required some adjustments. In particular, lines 9-16 of Algorithm 11 are
modifications that ensure it works correctly.

Lemma 3.6.1. Let G be a group isomorphic to An or Sn for some even n ∈ P with
n ≥ 6. Given n, a process R for generating random elements of G and a, b ∈ G

which map under some monomorphism θ : G → Sn to an (n− 1)-cycle and a 3-cycle
respectively, Algorithm 11 returns alternating n-generators within G with probability
at least 1−

(
1− 3

n

)2n/3
.

Proof. Let l be the unique fixed point of aθ. We aim to find c ∈ G such that cθ is a
3-cycle with l ∈ supp

(
cθ
)
. Since n ≥ 5, it suffices to search among conjugates of b in G.

Indeed, if x ∈ Sn is 3-cycle then xy = bθ for some y ∈ Sn. If y /∈ An, choose a 2-cycle
z ∈ Sn disjoint from x, so that xzy = bθ and zy ∈ An. So the total number of conjugates
c of b is 2

(
n
3

)
, and there are 2

(
n−1
2

)
with l ∈ supp

(
cθ
)
. The corresponding proportion is

2
(
n−1
2

)
2
(
n
3

) =
(n− 1) (n− 2)

2!

3!

n (n− 1) (n− 2)
=

3

n
.

3.6. FINDING ALTERNATING GENERATORS 47

Algorithm 11 FindEvenGenerators (R,n, a, b) .

1: for r := 1 to d2n/3e do
2: c := bRandom(R);

3:

4: if [ca, c] 6= 1 then
5: c′ := ca

2
;

6: if [c′, c] 6= 1 and
[
(c′)a

2

, c
]
6= 1 then

7: t := [ca, c] ;

8:

9: if t2 = 1 then
10: d := cc

a
;

11: if [d, da]2 = 1 then
12: return ac, c;

13: else if n ≥ 8 or
(
(ac)n−3 6= 1 and

(
ac2
)n−3 6= 1

)
then

14: return ac2, c2;

15: end if;
16: else if n ≥ 9 or

(
(at)3 6= 1 and (at)n−3 6= 1

)
then

17: return at, t;

18: end if;
19: end if;
20: end if;
21: end for;
22:

23: return 1, 1;

48 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF An AND Sn

If g, h ∈ G then bg = bh if and only if g and h are in the same coset of the centraliser
CG (b) of b in G. Each of these cosets has the same size, so finding a random conjugate
of b is equivalent to taking a random element g ∈ G and evaluating bg. Therefore the
probability that the algorithm will fail to find a 3-cycle c ∈ G with l ∈ supp

(
cθ
)

is at
most

(
1− 3

n

)2n/3
.

If such a c ∈ G is found, it does not commute with ca, ca
2 and ca

4
. Indeed, l is fixed

by x := aθ, x2 and x4, but the other points of supp
(
cθ
)

are not (since x has length at
least 5). Moreover, these points do not map to each other under x, x2 or x4 (since x
has odd length).

Write cθ = (l i j) , so that [ca, c]θ = (l jx ix) (l j i) (l ix jx) (l i j) . If ix 6= j and jx 6= i

then [ca, c]2 6= 1, by Lemma 3.5.1. In this case, the algorithm returns at and t, where
t := [ca, c] maps under θ to (l i ix) . Without loss of generality write l = 1, i = 2

and x = (2 3 . . . n), so that tθ = (1 2 3) and (at)θ = (1 2) (3 4 . . . n) , which are the
standard generators for An. In particular at has order n− 2, so the additional checks
when n < 9 have no effect.

Otherwise ix = j or jx = i, so [ca, c]2 = 1. In the first case cθ = (l i ix) , so ac and c

are alternating n-generators within G. Moreover, dθ = (l i ix)

(
l ix ix

2
)
=
(
ix i ix

2
)

and

hence the supports of dθ and (da)θ =
(
ix

2
ix ix

3
)

intersect at 2 points. Therefore [d, da]

has order 2, and the algorithm returns the correct elements. Otherwise
(
c2
)θ

= (l j jx) ,

so it is correct to return ac2 and c2. In this case dθ = (l jx j)

(
l jx

2
jx

)
=
(
jx

2
l j
)
, so

(da)θ =
(
jx

3
l jx

)
and [d, da] has order 3. Since ac2 and c2 are alternating n-generators,

(ac)n−3 6= 1 6=
(
ac2
)n−3

. In particular, the additional checks when n < 8 have no effect.
This shows that the correct elements are returned whenever l ∈ supp

(
cθ
)
.

Conversely, let c ∈ G be a 3-cycle with l /∈ supp
(
cθ
)

such that [ca, c] 6= 1. Then the
supports of cθ and (ca)θ intersect in at most 2 points. If they intersect at exactly 2 points,
then [ca, c]2 = 1 and supp

(
cθ
)
=
{
i, ix, ix

2
}

for some i ∈ supp (x) (since x has length
at least 5). Without loss of generality write i = 2 and x = (2 3 . . . n) , so that cθ is
(2 3 4) or (2 4 3) . If n ≥ 8 then c commutes with ca4 , whose image has support {6, 7, 8} .
Otherwise, suppose that cθ = (2 3 4) . Then dθ = (2 3 4)(3 4 5) = (2 4 5) , so (da)θ =

(3 5 6) and [d, da] has order 3. Moreover
(
ac2
)θ

= (2 3 . . . n) (2 4 3) = (4 5 . . . n) has
order n−3. Similarly, if cθ = (2 4 3) then dθ = (2 4 3)(3 5 4) = (2 3 5) , so (da)θ = (3 4 6)

3.6. FINDING ALTERNATING GENERATORS 49

and [d, da] has order 3. The above calculation shows that (ac)θ = (4 5 . . . n) has order
n− 3. In every case the algorithm will move on to test the next random conjugate of b.
Otherwise the supports of cθ and (ca)θ intersect at exactly one point, and hence [ca, c]2 6=
1. If c does not commute with ca2 then supp

(
cθ
)

is either
{
i, ix, ix

3
}

or
{
i, ix

2
, ix

3
}

for
some i ∈ supp (x) . Without loss of generality write i = 2 and x = (2 3 . . . n) , so that
supp

(
cθ
)

is either {2, 3, 5} or {2, 4, 5} . If n ≥ 9 it follows that c commutes with ca
4
.

Otherwise, we claim that at has order 3 or n− 3, where t := [ca, c] . Indeed, tθ is one of

[(2 3 5)x , (2 3 5)] = (3 6 4) (2 5 3) (3 4 6) (2 3 5) = (3 5 4) ,

[(2 5 3)x , (2 5 3)] = (3 4 6) (2 3 5) (3 6 4) (2 5 3) = (2 6 3) ,

[(2 4 5)x , (2 4 5)] = (3 6 5) (2 5 4) (3 5 6) (2 4 5) = (2 6 5) ,

[(2 5 4)x , (2 5 4)] = (3 5 6) (2 4 5) (3 6 5) (2 5 4) = (3 5 4) ,

and hence (at)θ is one of

(2 3 . . . n) (3 5 4) = (2 5 6 . . . n) ,

(2 3 . . . n) (2 6 3) = (3 4 5) (6 7 . . . n) ,

(2 3 . . . n) (2 6 5) = (2 3 4) (6 7 . . . n) ,

where (6 7 . . . n) denotes 1 if n = 6. Since n ∈ {6, 8} , the orders of these are n− 3 or
3. So in every case the algorithm will move on to test the next random conjugate of
b.

Lemma 3.6.2. Let G be a group isomorphic to either An or Sn for some odd n ∈ P
with n ≥ 5. Given n, a process R for generating random elements of G and a, b ∈ G

which map under some monomorphism θ : G → Sn to an n-cycle and a 3-cycle
respectively, Algorithm 12 returns alternating n-generators within G with probability

at least 1−
(
1− 6

n+3

)n+3
3
.

Proof. We aim to find c ∈ G such that cθ is a 3-cycle with support intersecting
supp

(
(ca)θ

)
. As argued in Lemma 3.6.1, it suffices to search the 2

(
n
3

)
conjugates of b

for such a cycle. If x = aθ, there are no 3-cycles y ∈ Sn such that supp (y) = supp (yx) .

The number with |supp (y) ∩ supp (yx)| = 2 is 2n, since there are n choices for the point
i ∈ supp (y) outside the intersection, and 2 choices for a cycle with support

{
i, ix, ix

2
}
.

50 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF An AND Sn

Algorithm 12 FindOddGenerators (R,n, a, b) .

1: for r := 0 to dn/3e do
2: c := bRandom(R);

3:

4: if [c, ca] 6= 1 then
5: c′ := ca

2
; . 1, 2 ∈ supp (c)

6: if (cca)2 = 1 then
7: d := cc

′
; . supp (c) = {1, 2, 3}

8:

9: if
[
d, da

2
]
= 1 or

(
n = 5 and

[
d, da

2
]2

6= 1

)
then

10: return ac2, c; . c = (1 2 3)

11: else
12: return ac, c2; . c = (1 3 2)

13: end if;
14: else
15: d := cc

a
;

16:

17: if [d, da] = 1 or
([
c, cc

′
]
6= 1 and

[
d, da

2
]
6= 1 and [d, da]2 6= 1

)
then

18: t :=
[
c2, ca

]
; . 1c = 2

19: else
20: t :=

[
c, (ca)2

]
; . 2c = 1

21: end if;
22:

23: return at2, t;

24: end if;
25: end if;
26: end for;
27:

28: return 1, 1;

3.6. FINDING ALTERNATING GENERATORS 51

Moreover, the number with |supp (y) ∩ supp (yx)| = 1 is 2n (n− 4) , since there are n
choices for the point of intersection i, and n− 4 choices for j ∈ Pn \

{
ix

−2
, ix

−1
, i, ix

}
such that supp (y) =

{
i, j, ix

−1
}
.

Therefore the number of conjugates of c of b such that cθ is a 3-cycle with support
intersecting supp

(
(ca)θ

)
is 2n (n− 3) , and the corresponding proportion is

2n (n− 3)

2
(
n
3

) = n (n− 3)
3!

n (n− 1) (n− 2)
=

6 (n− 3)

(n− 1) (n− 2)
≥ 6

n+ 3
.

So the probability that the algorithm will fail to find such a 3-cycle is at most(
1− 6

n+3

)1+n
3
.

If such a cycle c is found, it will not commute with ca, since the supports of their images
intersect, but cannot be equal. Hence there exists i ∈ supp

(
cθ
)

such that ix ∈ supp
(
cθ
)

and ix
−1

/∈ supp
(
cθ
)
. Without loss of generality write i = 1 and x = (1 2 . . . n) , so

that supp
(
cθ
)
= {1, 2, j} for some j ∈ Pn−1. If j = 3, then (cca)θ is one of

(1 2 3) (2 3 4) = (1 3) (2 4) or (1 3 2) (2 4 3) = (1 2) (3 4) .

and has order 2. Otherwise (cca)θ is one of

(1 2 j) (2 3 jx) = (1 3 jx 2 j) or (2 1 j) (3 2 jx) = (1 j jx 3 2) ,

and has order 5. Hence the algorithm distinguishes these cases correctly.
Suppose that cθ = (1 2 3) . Then dθ = (1 2 3)(3 5 4) = (1 2 5) , which provided n ≥ 7

commutes with
(
da

2
)θ

= (3 4 7) . If n = 5 then
(
da

2
)θ

= (3 4 2) and
[
d, da

2
]

has
order 3, by Lemma 3.5.1. In either case, the algorithm returns alternating n-generators
because

cθ = (1 2 3) and
(
ac2
)θ

= (1 2 . . . n) (1 3 2) = (3 4 . . . n) .

Conversely, suppose that cθ = (1 3 2) . Then dθ = (1 3 2)(3 4 5) = (1 4 2) does not

commute with
(
da

2
)θ

= (3 6 4) , provided n 6= 5. Otherwise the latter is (3 1 4) , and[
d, da

2
]2

= 1. The algorithm returns alternating n-generators for the same reason as
above.
It remains to consider the case 4 ≤ j ≤ n− 1. Suppose that cθ = (1 2 j) . Then

(
c2
)θ

=

(2 1 j) and (ca)θ = (2 3 jx) , so
[
c2, ca

]θ
= (1 2 j) (3 2 jx) (2 1 j) (2 3 jx) = (1 2 3) .

52 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF An AND Sn

Therefore t should be assigned to this commutator. Moreover dθ = (1 2 j)(2 3 jx) =

(1 3 j) , so if [d, da] 6= 1 then j = 4 (since 5 ≤ jx ≤ n). In this case [d, da] has order
3, because dθ = (1 3 4) and (da)θ = (2 4 5) . Furthermore

[
d, da

2
]
6= 1 6=

[
c, cc

′
]
, since(

da
2
)θ

is either (3 5 6) or (3 5 1) and (c′)θ is either (3 4 6) or (3 4 1) , depending on
whether n = 5. This shows that t is assigned correctly whenever cθ = (1 2 j) .

Conversely, suppose that cθ = (2 1 j) . Then
(
c2
)θ

= (1 2 j) , so t should be assigned
to
[
c, (ca)2

]
. Moreover dθ = (2 1 j)(3 2 jx) = (jx 1 j) , which implies that (da)θ =(

jx
2
2 jx

)
. Therefore [d, da] 6= 1. It remains to show that one of the other expressions

on line 17 is trivial. To this end, suppose that
[
c, cc

′
]
6= 1. Then j = 4 or jx2

= 1, since

(c′)θ =
(
4 3 jx

2
)
. In the first case dθ = (1 4 5) , so provided that n ≥ 7 the image of

da
2 under θ is (3 6 7) . This implies that

[
d, da

2
]
= 1. If n = 5, then (da)θ = (1 2 5)

and hence [d, da] has order 2. In the second case j = n− 1, so dθ = (n 1 (n− 1)) and
(da)θ = (1 2 n) . Therefore [d, da] has order 2. It follows that one of the expressions on
line 17 is trivial, and t is assigned correctly.

3.7 Finding input cycles

The algorithms of the previous section reduce the problem of finding alternating genera-
tors to that of constructing cycles with certain lengths. In order to accomplish this, we
search among random elements which give 1 when raised to a certain power. Several
preliminary results are required before we can determine the probability that such an
algorithm will succeed.

Definition 3.7.1. If n ∈ P, then d (n) is the number of divisors of n, and D (n) is the
sum of these divisors.

The first section of the following proof was inspired by [9].

Lemma 3.7.2. If n ∈ P, then d (n) ≤ 24 3
√
n/315.

Proof. Let pα1
1 pα2

2 . . . pαr
r be a prime factorisation of n, with αi ∈ P for all i ∈ Pr. Then

d (n) =
r∏

i=1

(αi + 1) ,

3.7. FINDING INPUT CYCLES 53

since each divisor of n is of the form pβ1
1 p

β2
2 . . . pβr

r for some β1, β2, . . . , βr ∈ N with
βi ≤ αi for all i ∈ Pr. It follows that

d (n)
3
√
n

=
r∏

i=1

αi + 1

p
αi/3
i

. (3.1)

Now let i ∈ Pr, and suppose that pi ≥ 8. Since αi ≥ 1 and 1
2 ≤ log (2) ,

log (αi + 1) =

∫ αi+1

1

dt

t
=

∫ 2

1

dt

t
+

∫ αi+1

2

dt

t
≤
∫ 2

1

dt

t
+

∫ αi+1

2

dt

2

= log (2) +
αi + 1− 2

2
≤ log (2) (1 + αi − 1) = log (2)αi

= 3 log (2)
αi

3
= log (8)

αi

3
≤ log (pi)

αi

3
= log

(
p
αi/3
i

)
.

Therefore αi + 1 ≤ p
αi/3
i , so αi+1

p
αi/3
i

≤ 1. Otherwise pi < 8. Define a function fi : R → R

by
fi (x) =

x+ 1

p
x/3
i

for all x ∈ R. For each x ∈ R, it follows from the quotient rule that

f ′i (x) =
d

dx

x+ 1

p
x/3
i

=
p
x/3
i − (x+ 1) p

x/3
i log (pi) /3

p
2x/3
i

=
1

3p
x/3
i

(3− (x+ 1) log (pi)) .

Let xi = 3/ log (pi) − 1. Then f ′i (x) > 0 for all x ∈ (−∞, xi) and f ′i (x) < 0 for
all x ∈ (xi,∞) . By the Mean Value Theorem, fi|Z is maximised at bxic or dxie . In
particular fi (αi) ≤Mi, where Mi := max {fi (bxic) , fi (dxie)} is given below.

pi bxic fi (bxic) dxie fi (dxie) Mi

2 3 2 4 5
3√16

2

3 1 2
3√3

2 3
3√9

3
3√9

5 0 1 1 2
3√5

2
3√5

7 0 1 1 2
3√7

2
3√7

To summarise, if pi ≥ 8 then the ith term of (3.1) is at most 1; otherwise it is at most
Mi. Since each prime appears at most once in (3.1),

d (n)
3
√
n

=

r∏
i=1

αi + 1

p
αi/3
i

≤ 2× 3
3
√
9
× 2

3
√
5
× 2

3
√
7
=

24
3
√
315

.

Therefore d (n) ≤ 24 3
√
n/315.

54 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF An AND Sn

Lemma 3.7.3. If n ∈ P, then D (n) < (4 + log (n))n/2.

Proof. Let ∆ = {i ∈ Pn | i divides n} ,∆1 = {i ∈ ∆ | i <
√
n} and ∆2 = {i ∈ ∆ | i ≥

√
n} .

Then i ≤ N := d
√
ne − 1 for all i ∈ ∆1, so

∑
i∈∆1

i ≤
N∑
i=1

i =
N (N + 1)

2
=

(d
√
ne − 1) d

√
ne

2
<

√
n (

√
n+ 1)

2
=
n+

√
n

2
≤ n.

Moreover, n/i ∈ P and n/i ≤
√
n, so that n/i ≤ b

√
nc , for all i ∈ ∆2. It follows that

∑
i∈∆2

i =
∑
i∈∆2

n

n/i
≤

⌊√
n
⌋∑

i=1

n

i
= n

⌊√
n
⌋∑

i=1

∫ i

i−1

dt

i
≤ n+ n

⌊√
n
⌋∑

i=2

∫ i

i−1

dt

t
= n+ n

∫ ⌊√
n
⌋

1

dt

t

= n+ n log
(⌊√

n
⌋)

≤ n+ n log
(
n

1
2

)
= n+

n

2
log (n) =

n

2
(2 + log (n)) .

Therefore D (n) < n+ (2 + log (n))n/2 = (4 + log (n))n/2.

Lemma 3.7.4. Let n, p ∈ P such that p is prime, p2 < n and each prime factor of n is
larger than p. Then d (np) ≤ 48 3

√
n/315. Also let Γ = {i ∈ Pn | i divides np} . Then∑

i∈Γ
i <

4 + 2p+ (log (n)− 2 log (p)) (1 + p)

2
n. (3.2)

Proof. Each divisor of np is either k or kp for some k ∈ P with k | n. Since p - n, these
two cases never coincide. By Lemma 3.7.2, it follows that d (np) = 2d (n) ≤ 48 3

√
n/315.

Furthermore, since np is the only divisor of np which lies outside Pn,∑
i∈Γ

i = D (n) +D (n) p− np = D (n) (1 + p)− np.

Now let ∆ = {i ∈ Pn | i divides n} ,∆1 = {i ∈ ∆ | i <
√
n} and ∆2 = {i ∈ ∆ | i ≥

√
n} .

Then
∑

i∈∆1
i < n, and n/i ≤ b

√
nc for all i ∈ ∆2, as shown in Lemma 3.7.3. Moreover,

n/i ≥ p+1 for all i ∈ ∆2 \ {n} , since each prime factor of n is at least p+1. Therefore

∑
i∈∆2

i =
∑
i∈∆2

n

n/i
≤ n+

⌊√
n
⌋∑

i=p+1

n

i
= n+ n

⌊√
n
⌋∑

i=p+1

∫ i

i−1

dt

i
≤ n+ n

⌊√
n
⌋∑

i=p+1

∫ i

i−1

dt

t

= n+ n

∫ ⌊√
n
⌋

p

dt

t
= n+ n

(
log
(⌊√

n
⌋)

− log (p)
)
≤ n

2
(2 + log (n)− 2 log (p)) .

It follows that D (n) < (4 + log (n)− 2 log (p))n/2, and hence (3.2) holds.

3.7. FINDING INPUT CYCLES 55

Lemma 3.7.5. Let k,m, n ∈ P and ∆ = {i ∈ Pn | i divides mn} . If k > 1, then

∑
i∈∆

ik < nk
(
1 +

m

k − 1

)
.

Proof. Suppose that k > 1. If i ∈ ∆, then i ≤ n and hence mn/i ≥ m. It follows that

∑
i∈∆

ik =
∑
i∈∆

(
mn

mn/i

)k

≤
mn∑
i=m

(mn
i

)k
= nk + (mn)k

mn∑
i=m+1

∫ i

i−1

dt

ik

≤ nk +mknk
mn∑

i=m+1

∫ i

i−1

dt

tk
≤ nk +mknk

∫ ∞

m

dt

tk

= nk +mknk
(
lim
t→∞

1

tk−1 (1− k)
− 1

mk−1 (1− k)

)
= nk +

mknk

mk−1 (k − 1)
= nk

(
1 +

m

k − 1

)
.

Lemma 3.7.6. Let k, n ∈ P, m ∈ Nn and ∆ = {i ∈ Pn | i divides k (n−m)} . Suppose
that n−m ≥ km. Then M := max∆ = n−m.

Proof. Suppose that M 6= n −m. Then M > n −m since n −m ∈ ∆. Now suppose
that c := gcd (M,n−m) > m. Then

n−m

c
c = n−m < M ≤ n =

n−m

c
c+m <

(
n−m

c
+ 1

)
c,

which is a contradiction because there is no integer between n−m
c and n−m

c + 1, but c
divides M. Therefore c ≤ m, so m 6= 0 and hence

k (n−m) ≥ lcm (M,n−m) =
M (n−m)

c
≥ Mkm

m
> (n−m) k.

This is clearly a contradiction, so M = n−m.

Lemma 3.7.7. Let n ∈ P and k ∈ Pn \ {1} . Then there are n!
k(n−k)! cycles of length k

in Sn. If m ∈ P and 2 ≤ n−m ≤ n− k then there are n!
k(n−m)(m−k)! permutations in Sn

composed of (disjoint) cycles of length k and n−m. The same holds for An provided
that k − 1 (respectively n−m+ k) is even.

56 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF An AND Sn

Proof. Let k ∈ Pn \ {1} . There are
(
n
k

)
choices for the support of a k-cycle, and (k − 1)!

cycles with a given support. Hence there are(
n

k

)
(k − 1)! =

n! (k − 1)!

k! (n− k)!
=

n!

k (n− k)!
(3.3)

cycles of length k in Sn. Now let m ∈ P, and suppose that k ≤ n−m. Given a k-cycle
x ∈ Sn, the number of cycles of length n−m in Sn which fix supp (x) is the same as
the number of cycles of length n−m in Sn−k, which is (n−k)!

(n−m)(m−k)! according to (3.3).
Therefore

n!

k (n− k)!

(n− k)!

(n−m) (m− k)!
=

n!

k (n−m) (m− k)!

is the number of permutations in Sn composed of cycles of length k and n−m. A k-cycle
has parity (k − 1) mod 2, and an element composed of cycles of length k and n−m has
parity (k + n−m− 2) mod 2. These are 0 if and only if k − 1 (respectively k + n−m)
is even.

Theorem 3.7.8. Let m ∈ N. For every ε ∈ (0,∞) there exists N ∈ P such that, for all
n ∈ P with n ≥ N, the number of permutations g ∈ Sn such that gm!(n−m) = 1 is less
than (n− 1)! (1 + ε) .

Proof. Let ε ∈ (0,∞) , and assume ε < 3 without loss of generality. Also let k,N ∈ P be

such that k ≥ 6m!
ε +2 andN ≥ max

{(
78kkm!

ε

)3
, k

(
1−

(
3

3+ε

) 1
k−1

)−1

,
√
44m!, (m! + 1)m

}
.

Let n ∈ P with n ≥ N ≥ k ≥ 3. Consider g ∈ Sn with gm!(n−m) = 1, and let X be the
cycle structure of g. Then P := {supp (x) ∩ Pk | x ∈ X} \ {∅} ∪ {{σ} | σ ∈ fix (g) ∩ Pk}
is a partition of Pk into non-empty sets. Let s = |P| , and write P = {P1, P2, . . . , Ps} .
For each i ∈ Ps there exists ai ∈ P such that either ai ≥ 2 and Pi = supp (xi) ∩ Pk for
some cycle xi ∈ X of length ai, or ai = |Pi| = 1 and Pi ⊆ fix (g) . Therefore g is among
the

Ma1,a2,...,as
P1,P2,...,Ps

:=

n−
s∑

j=1

aj

!

s∏
i=1

((
n− k −

∑i−1
j=1 (aj − |Pj |)

ai − |Pi|

)
(ai − 1)!

)
(3.4)

elements of Sn with the above property. More precisely, Ma1,a2,...,as
P1,P2,...,Ps

counts those
h ∈ Sn such that, for every i ∈ Ps, if ai ≥ 2 then h contains an ai-cycle xi such that
Pi = supp (xi) ∩ Pk, and otherwise (when ai = |Pi| = 1) Pi ⊆ fix (h) . To check this,

3.7. FINDING INPUT CYCLES 57

compare the product terms in (3.4) with the first term in (3.3). If i ∈ Ps and ai ≥ 2,

then the number of choices for supp (xi) is restricted by the fact that all k elements of
Pk are unavailable, so we need only choose ai − |Pi| of the remaining n− k elements.
However,

∑i−1
j=1 (aj − |Pj |) of these elements have been assigned to the preceding cycles.

If ai = 1, then ai − |Pi| = 0 and the ith product term in (3.4) is just 1, as required. The
first term in (3.4) is the number of permutations of the remaining points of Pn. Note
that

Ma1,a2,...,as
P1,P2,...,Ps

=

n−
s∑

j=1

aj

!

s∏
i=1


(
n− k −

∑i−1
j=1 (aj − |Pj |)

)
! (ai − 1)!

(ai − |Pi|)!
(
n− k −

∑i
j=1 (aj − |Pj |)

)
!


=

n−
s∑

j=1

aj

!
(n− k)!(

n− k −
∑s

j=1 (aj − |Pj |)
)
!

s∏
i=1

(ai − 1)!

(ai − |Pi|)!

= (n− k)!
s∏

i=1

(ai − 1)!

(ai − |Pi|)!
≤ (n− k)!

s∏
i=1

a
|Pi|−1
i .

Define ∆ = {i ∈ Pn | i divides m! (n−m)} . Since supp
(
gm!(n−m)

)
= supp (1) = ∅, the

length of each x ∈ X divides m! (n−m) . Therefore a1, a2, . . . , as ∈ ∆, and the number
of possibilities for g ∈ Sn with gm!(n−m) = 1 is less than

M :=
∑

(n− k)!
s∏

i=1

a
|Pi|−1
i , (3.5)

where the sum is over all s ∈ Pk, partitions {P1, P2, . . . , Ps} of Pk and a1, a2, . . . , as ∈ ∆.

By Lemma 3.7.6 ∆ ⊆ Pn−m, so by Lemma 3.7.5 the contribution made to (3.5) by {Pk}
is

(n− k)!
∑
i∈∆

ik−1 < (n− k)! (n−m)k−1

(
1 +

m!

k − 2

)
≤ (n− k)!nk−1

(
1 +

m!

k − 2

)
.

Let P be another partition of Pk, and write P = {P1, P2, . . . , Ps} where s := |P| ∈ Pk \
{1} . By Lemma 3.7.2 |∆| ≤ d (m! (n−m)) ≤ 24 3

√
m! (n−m) /315 ≤ (44m! (n−m))

1
3 ,

so the number of sequences a1, a2, . . . , as ∈ ∆ is at most (44m! (n−m))
s
3 . For such a

sequence
s∏

i=1

a
|Pi|−1
i ≤

s∏
i=1

n|Pi|−1 = n
∑s

i=1(|Pi|−1) = nk−s =
nk

ns
.

58 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF An AND Sn

Since n2 ≥ 44m!, the contribution made to (3.5) by P is at most (n− k)! times

(44m! (n−m))
s
3
nk

ns
≤
(
44m!n

n3

) s
3

nk ≤
(
44m!

n2

) 2
3

nk < 13m!nk−
4
3 .

As Pk is finite, there exists a function f : P → Pk such that f (P) ∈ P for all P ∈ P.
If i ∈ Pk then there is a unique Pi ∈ P such that i ∈ Pi, so i 7→ f (Pi) is a well-
defined mapping of Pk to itself. Define a relation ∼ on Pk × Pk by i ∼ j if and only
if f (Pi) = f (Pj) . This clearly an equivalence relation and P is the corresponding set
of equivalence classes. Every function mapping Pk to itself determines (in this way) a
unique partition of Pk, so the number of partitions of Pk is at most kk, the number of
functions mapping Pk to itself. It follows that

M < (n− k)!

(
nk−1

(
1 +

m!

k − 2

)
+ 13kkm!nk−

4
3

)
< (n− 1)!

(
n

n− k

)k−1(
1 +

m!

k − 2
+ 13kkm!n−

1
3

)
,

where the second inequality follows from the fact that

(n− k)!nk−1 = (n− 1)!
k−1∏
i=1

n

n− i
< (n− 1)!

k−1∏
i=1

n

n− k
= (n− 1)!

(
n

n− k

)k−1

.

By the definitions of k and N

m!

k − 2
+

13kkm!

n
1
3

≤ m!
6m!
ε + 2− 2

+
13kkm!ε

78kkm!
=
ε

6
+
ε

6
=
ε

3
,

and likewise
(

n
n−k

)k−1
≤ 1 + ε

3 because

n

n− k
=

1

1− k
n

≤ 1

1−
(
1−

(
3

3+ε

) 1
k−1

) =

(
3 + ε

3

) 1
k−1

=
(
1 +

ε

3

) 1
k−1

.

Therefore

M < (n− 1)!
(
1 +

ε

3

)(
1 +

ε

3

)
= (n− 1)!

(
1 +

2ε

3
+
ε2

32

)
< (n− 1)! (1 + ε) .

3.7. FINDING INPUT CYCLES 59

This result effectively states that, for sufficiently large degrees, there is an arbitrarily
high probability that a permutation which is 1 when raised to a certain power has a
certain cycle structure. The following corollary formalises this idea. Unfortunately, the
degrees required by this result are too high to be of practical use. However, the idea
behind the proof can be used to obtain a reasonable bound for most degrees.

Corollary 3.7.9. Let m ∈ N. For all ε ∈ (0,∞) there exists N ∈ P such that, for all
n ∈ P with n ≥ N and n

2 > m, the proportion of permutations g ∈ Sn that contain a
cycle of length n−m, among those for which gm!(n−m) = 1, is greater than 1− ε.

Proof. Let ε ∈ (0,∞) , and take N from Theorem 3.7.8. Also let n ∈ P with n ≥ N and
n
2 > m. Then the number of permutations g ∈ Sn such that gm!(n−m) = 1 is less than
(n− 1)! (1 + ε) . By Lemma 2.4.1, the number that contain a cycle of length n−m is

n!
n−m . Let g ∈ Sn be such a permutation. Then the other cycles contained in g each have
length at most m, and hence gm!(n−m) = 1. Therefore the proportion of such elements
among those g ∈ Sn with gm!(n−m) = 1 is greater than

n!/ (n−m)

(n− 1)! (1 + ε)
=

n

n−m

(
1− ε

1 + ε

)
> 1

(
1− ε

1

)
= 1− ε.

Corollary 3.7.10. Let k,m ∈ P be such that 2 ≤ k ≤ m. For all ε ∈ (0,∞) there exists
N ∈ P such that, for all n ∈ P with n ≥ N and n

2 > m, the proportion of permutations
g ∈ Sn that are composed of (disjoint) cycles of length k and n−m, among those for
which gk(n−m) = 1, is greater than 1−ε

m! .

Proof. Let ε ∈ (0,∞) , and take N from Theorem 3.7.8. Also let n ∈ P with n ≥ N

and n
2 > m. Then the number of permutations g ∈ Sn such that gm!(n−m) = 1 is less

than (n− 1)! (1 + ε) . If g ∈ Sn and gk(n−m) = 1, then gm!(n−m) = 1 since k ≤ m. So
the number of such elements in Sn is also less than (n− 1)! (1 + ε) . By Lemma 3.7.7,
the number of permutations g ∈ Sn that are composed of cycles of length k and n−m

is n!
k(n−m)(m−k)! , and all of these clearly satisfy gk(n−m) = 1. Therefore the proportion of

such elements among those g ∈ Sn with gk(n−m) = 1 is greater than

n!/k (n−m) (m− k)!

(n− 1)! (1 + ε)
=

n

(n−m)

(
1− ε

1 + ε

)
1

k (m− k)!
>

1− ε

m!
.

60 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF An AND Sn

We now give more practical bounds for these proportions, by using ideas from the proof
of Theorem 3.7.8. Our results are not valid for small degrees, so we first describe an
algorithm which can be used to calculate these exactly.

Algorithm 13 NumberOfPermutations (n, p) .

1: C := [1, 1] ;

2:

3: for m := 2 to n do
4: N := 1;

5: s := 1;

6:

7: for l := 2 to m do
8: s := s (m− l + 2) ;

9:

10: if l | p then
11: c := s;

12: for i := 1 to m− l + 1 do
13: c := c(m−i−l+2)

m−i+1 ;

14: N := N + cCm−i−l+2;

15: end for;
16: end if;
17: end for;
18:

19: Append(C,N);

20: end for;
21:

22: return Cn+1;

Lemma 3.7.11. Given n, p ∈ P, Algorithm 13 returns the number of permutations
g ∈ Sn which satisfy gp = 1.

Proof. The algorithm constructs a list C such that, for each m ∈ Pn, Cm+1 is the
number of permutations g ∈ Sm which satisfy gp = 1. Pass m of the outer loop aims to
calculate Cm+1. Every permutation in Sm is composed of disjoint cycles, which can be

3.7. FINDING INPUT CYCLES 61

ordered as described in Lemma 3.3.2. The outer loop initially sets N to 1, to count the
identity permutation. It then adds to this, for each l ∈ Pm, the number of permutations
g ∈ Sm which satisfy gp = 1 and start with a cycle of length l. If l = 1 or l does
not divide p there are no permutations with these properties. Otherwise, the number
depends on the least element i ∈ Pn of the first cycle. This is clearly less than m− l. The
variable s is continually updated to hold m!

(m−l+1)! , and similarly c = (m−i)!
(m−i−l+1)! holds

the number of sequences of length l− 1 in Pm−i. Equivalently, c is the number of cycles
of x ∈ Sm of length l such that i is the least element of supp (x) . Every permutation
g ∈ Sm which satisfies gp = 1 and starts with such a cycle x consists of x composed
with a permutation h ∈ Sm|{i,i+1,...,m}\supp(x) such that hp = 1. Conversely, every such
composition gives a permutation g ∈ Sm which satisfies gp = 1 and starts with x.

Since |{i, i+ 1, . . . ,m} \ supp (x)| = m− i− l+ 1, the count N is updated correctly on
line 14.

Lemma 3.7.12. Let n ∈ P and m ∈ N2 be such that n ≥ 5 and n −m is odd. The
proportion of cycles of length n−m among permutations g ∈ Sn for which gn−m = 1 is
at least 2

5 .

Proof. Define ∆ = {i ∈ Pn | i divides n−m} . Using (3.5) for the special case k = 3,

the number of permutations g ∈ Sn with gn−m = 1 is less than

M :=
∑

(n− 3)!

s∏
i=1

a
|Pi|−1
i ,

where the sum is over all s ∈ P3, partitions {P1, P2, . . . , Ps} of P3 and a1, a2, . . . , as ∈ ∆.

If s = 3 then there is only one partition of P3 of size s, namely {{1} , {2} , {3}} . The
number of sequences a1, a2, a3 ∈ ∆ is at most 44 (n−m) ≤ 44n, by Lemma 3.7.2. So
the contribution made to M by this partition is at most 44 (n− 3)!n, since the product
terms are all raised to the power of 0. Each of the three partitions of size 2 contributes
at most

(n− 3)!D (n−m) d (n−m) < (n− 3)!
4 + log (n)

2
n

3
√
44n < 2n

4
3 (n− 3)! (4 + log (n))

to M, by Lemmas 3.7.2 and 3.7.3. The remaining partition {P3} contributes less than

(n− 3)!n2
(
1 +

1

2− 1

)
= 2n2 (n− 3)!

62 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF An AND Sn

to M, by Lemma 3.7.5. It follows that

M < (n− 3)!
(
44n+ 6n

4
3 (4 + log (n)) + 2n2

)
.

Define a function f : (2,∞) → R by

f (x) =
44x+ 6x

4
3 (4 + log (x)) + 2x2

(x− 1) (x− 2)

for all x ∈ (2,∞) . It can be shown, via the Mean Value Theorem, that f is decreasing
on [5000,∞) . Hence by Lemma 3.7.7, if n > 5000 the proportion of cycles of length
n−m among permutations g ∈ Sn for which gn−m = 1 is at least

n!

M (n−m)m!
>

n!

(n− 1)!f (n) (n−m)
≥ n

f (5000) (n−m)
≥ f (5000)−1 >

2

5
.

An exact calculation of this proportion using Algorithm 13 shows that for 5 ≤ n ≤ 5000

the minimum occurs when n = 9. This proportion, namely 4480
5121 , is larger than 2

5 .

Lemma 3.7.13. Let n ∈ P and m ∈ Pn be such that n ≥ 5 and 3 ≤ m ≤ 6 as small
as possible such that n−m is not divisible by 2 or 3. The proportion of permutations
g ∈ Sn that are composed of (disjoint) cycles of length 3 and n−m, among those for
which g3(n−m) = 1, is at least 1

100 .

Proof. First, suppose that n ≥ 24. Define ∆ = {i ∈ Pn | i divides 3 (n−m)} . Using
(3.5) for the special case k = 3, the number of permutations g ∈ Sn with g3(n−m) = 1 is
less than

M :=
∑

(n− 3)!

s∏
i=1

a
|Pi|−1
i ,

where the sum is over all s ∈ P3, partitions {P1, P2, . . . , Ps} of P3 and a1, a2, . . . , as ∈ ∆.

If s = 3 then there is only one partition of P3 of size s, namely {{1} , {2} , {3}} . Since
n − m is not divisible by 2 or 3, the number of sequences a1, a2, a3 ∈ ∆ is at most
352 (n−m) ≤ 352n, by Lemma 3.7.4. So the contribution made to M by this partition
is at most 352 (n− 3)!n. As n−m ≥ n− 6 ≥ 18, Lemma 3.7.6 implies that ∆ ⊆ Pn−m.

Hence by Lemma 3.7.4, the three partitions of size 2 contribute at most

3d (n−m) (n− 3)!
∑
i∈∆

i < 3
3
√
352n (n− 3)!

4 + 6 + 4 (log (n−m)− 2 log (3))

2
(n−m)

<
3
√
9504n (n− 3)! (5− 4 log (3) + 2 log (n))n

< 22n
4
3 (n− 3)! (1 + 2 log (n))

3.7. FINDING INPUT CYCLES 63

to M. The remaining partition {P3} contributes less than

(n− 3)! (n−m)2
(
1 +

3

2− 1

)
< 4n2 (n− 3)!

to M, by Lemmas 3.7.6 and 3.7.5. It follows that

M < (n− 3)!
(
352n+ 22n

4
3 (1 + 2 log (n)) + 4n2

)
.

Define a function f : (2,∞) → R by

f (x) =
352x+ 22x

4
3 (1 + 2 log (x)) + 4x2

(x− 1) (x− 2)

for all x ∈ (2,∞) . It can be shown, via the Mean Value Theorem, that f is decreasing on
[5000,∞) . Hence by Lemma 3.7.7, if n > 5000 the proportion of permutations g ∈ Sn

that are composed of cycles of length 3 and n−m, among those for which g3(n−m) = 1,

is at least

n!

3M (n−m) (m− 3)!
>

n!

3 (n− 1)!f (n) (n−m) 3!
>
f (5000)−1

18
>

1

100
.

An exact calculation of this proportion using Algorithm 13 shows that for 5 ≤ n ≤ 5000

the minimum occurs when n = 31. This proportion, namely

891228765715570221907968

6021030439189582986154675
,

is larger than 1
100 .

Lemma 3.7.14. Let G be a group isomorphic to An or Sn for some n ∈ P with n ≥ 5.

Given n and a process R for generating random elements of G, Algorithm 14 returns
alternating n-generators within G with probability at least 1

400 .

Proof. It is clear that k and m are initialised to satisfy the requirements for m in
Lemmas 3.7.12 and 3.7.13 respectively. By Lemma 3.7.7, the proportion of cycles of
length n−k in Sn, thus An, is at least 1

n . In particular, the proportion of elements g ∈ G

which satisfy gn−k = 1 is at least 1
n . It follows that the probability that the algorithm

fails to find such an element is at most
(
1− 1

n

)2n
. Similarly, the proportion of elements

g ∈ G which satisfy g3(n−m) = 1 is at least 1
18n , and the probability that the algorithm

64 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF An AND Sn

Algorithm 14 FindAltGenerators (R,n) .

1: k := 1− (n mod 2) ;

2: m := n mod 6;

3:

4: if m ≤ 1 then
5: m := m+ 5;

6: else if m ≤ 3 then
7: m := m+ 1;

8: else
9: m := m− 1;

10: end if;
11:

12: a := 1;

13: c := 1;

14:

15: for r := 1 to 2n do
16: g := Random (R) ;

17: if gn−k = 1 then
18: a := g;

19: break;
20: end if;
21: end for;
22:

23: for r := 1 to 36n do
24: g := Random (R) ;

25: if g3(n−m) = 1 then
26: c := g;

27: break;
28: end if;
29: end for;

3.7. FINDING INPUT CYCLES 65

Algorithm 14 FindAltGenerators (R,n) (continued).
30: b := cn−m;

31:

32: if IsOdd (n) then
33: s, t := FindOddGenerators (R,n, a, b) ;

34: if CheckOddGenerators (n, s, t) then
35: return s, t;

36: end if;
37: else
38: s, t := FindEvenGenerators (R,n, a, b) ;

39: if CheckEvenGenerators (n, s, t) then
40: return s, t;

41: end if;
42: end if;
43:

44: return 1, 1;

fails to find such an element is at most
(
1− 1

18n

)36n
. Both of these probabilities are

bounded above by e−2 < 1
7 , so the chance that both succeed is at least

(
6
7

)2
. When this

occurs, the probability that a is a cycle of length n− k is at least 2
5 by Lemma 3.7.12.

Moreover, Lemma 3.7.13 implies that the probability that c is composed of cycles of
length 3 and n−m is at least 1

100 . When these conditions all hold, the chance that the
appropriate choice of Algorithm 11 or 12 succeeds is at least 1− e−2 > 6

7 . Therefore,
the probability that the algorithm succeeds is at least

(
6
7

)3 2
500 ≥ 1

400 .

Theorem 3.7.15. Given a finitely-generated group G, a constant ε ∈ (0, 1) , and n ∈ N
with n ≥ 11, Algorithm 15 determines whether G ' An or G ' Sn with probability
at least 1 − ε. If it determines that G ' An, via some isomorphism θ : G → An, the
algorithm returns functions to compute θ and θ−1. Likewise, if the algorithm finds that
G ' Sn, via some isomorphism θ : G→ Sn, it returns functions to compute θ and θ−1.

Proof. Suppose that G is isomorphic to An or Sn. The probability that none of c ∈ P
calls to Algorithm 14 succeed is

(
399
400

)c
, which is less than ε provided that log 399

400
(ε) < c.

66 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF An AND Sn

Algorithm 15 ConstructiveRecognition (G,n, ε) .

1: s := 1;

2: t := 1;

3:

4: R := RandomProcess (G) ;

5: c :=
⌈
log 399

400
(ε)
⌉
;

6:

7: while s = 1 or t = 1 do
8: s, t := FindAltGenerators (R,n) ;

9: c := c− 1;

10: if c ≤ 0 then
11: return false;
12: end if;
13: end while
14:

15: E :=

t, if j = 0(
Es

j

)2−(n mod 2)
, otherwise


∣∣∣∣∣∣ j ∈ [0, . . . , 8]

 ;

16: X := DomainCover (n, s, t, E) ;

17:

18: o := false;
19: for g ∈ Generators (G) do
20: b := Sym (n)!ElementToPermutation (n, s, t, E,X, g) ;

21: on failure: return false;
22:

23: if not o and IsOdd (b) then
24: o := true;
25: c := (1 2) b;

26: h := EvenPermutationToElement(n, s, t, c);

27:

28: t′ := hg−1;

29: s′ := (t′)(n+1) mod 2 st;

30: end if;

3.7. FINDING INPUT CYCLES 67

Algorithm 15 ConstructiveRecognition (G,n, ε) (continued).
31: if o then
32: h := PermutationToElement(n, s′, t′, b);

33: else
34: h := EvenPermutationToElement(n, s, t, b);

35: end if;
36:

37: if h 6= g then
38: return false;
39: end if;
40: end for;
41:

42: if o then
43: θ : g 7→ Sym (n)!ElementToPermutation (n, s, t, E,X, g) ;

44: φ : b 7→ PermutationToElement(n, s′, t′, b);

45: return true, o, θ, φ;
46: else
47: θ : g 7→ Alt(n)!ElementToPermutation (n, s, t, E,X, g) ;

48: φ : b 7→ EvenPermutationToElement(n, s, t, b);

49: return true, o, θ, φ;
50: end if;

68 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF An AND Sn

If one does, it returns alternating n-generators s and t within G, which induce a
monomorphism θ : G→ Sn. It is easy to check that the list E gives the initial 9 elements
of 〈s, t〉 . The next step constructs gθ for each generator g ∈ G, and if one of these
permutations is odd the algorithm computes symmetric n-generators s′ and t′ within
G. When this occurs G ' Sn, and the correct algorithms to compute θ and θ−1 are
returned. Otherwise G ≤ 〈s, t〉 , so G ' An and the corresponding algorithms are
returned correctly.
Conversely, if G is not isomorphic to An or Sn then the algorithm cannot possibly
succeed, since the test on line 37 requires that each generator of G lies in 〈s, t〉 or 〈s′, t′〉
for some alternating (symmetric) n-generators s and t (s′ and t′) within G.

Algorithm 15 only works for degrees at least 11, but it is easily modified to account for
those between 5 and 10, by replacing calls to Algorithm 9 with calls to Algorithm 10,
removing the call to Algorithm 6, and only computing the initial 3 elements of 〈s, t〉 .

3.8 Performance

The algorithms we have described have the same asymptotic performance as the corre-
sponding ones described in [6]. However, their actual running time can vary substantially
depending on the care taken to implement them. We have prepared an implementation
for the Magma computer algebra system [10]. This implementation, available at [11],
works for groups of degree at least 5. The algorithms employed are essentially the
same as those described in this chapter, but have been optimised substantially (trading
readability for speed). Moreover, the implementation of Algorithm 15 produces two
additional functions. The first of these takes an element of the black-box group G and
returns it as a word in the generators of G; the second takes a word in the generators of
G and returns the corresponding element.
We have compared the performance of our implementation with that of the built-in
Magma function RecogniseAlternatingOrSymmetric [12, p. 1818]. Our implementa-
tions of Algorithms 15 and 9 tend to be faster than their built-in equivalents, although
Algorithms 4 and 5 seem to take slightly longer to complete. The latter algorithms are
much faster than the others, so their performance is not as important. Our implemen-
tation of Algorithm 9 does less than the built-in equivalent, which is able to test for

3.8. PERFORMANCE 69

membership in the black-box group G. However, extending it would only require one
call to Algorithm 4 or 5, and one equality test within G, the running times of which are
far smaller than that of Algorithm 9 itself.
Listed below are the average running times (in seconds) we obtained by running each
algorithm three times on a variety of input groups, and randomly generated elements of
these groups. The same random elements were used as input to each implementation
of Algorithm 9, although different elements were used for each of the three repeated
tests; the resulting permutations were passed back to the appropriate implementation
of Algorithm 4 or 5. This process was automated, and the program we used to perform
it can be found at [13]. We used Magma version 2.18-8 on a computer with an AMD
Opteron 880 processor clocked at 2.4 GHz.

Algorithm Built-in equivalent
Input group Parent 15 9 4/5 15 9 4/5

A100 S100 0.10 0.04 0.01 0.80 0.21 0.00

A101 S101 0.08 0.04 0.01 0.82 0.22 0.00

S100 S100 0.10 0.04 0.00 0.81 0.21 0.01

S101 S101 0.08 0.04 0.00 0.83 0.22 0.00

A100 GL (99, 3) 1.52 0.52 0.06 2.83 0.81 0.03

A101 GL (100, 3) 1.56 0.51 0.07 2.70 0.91 0.03

S100 GL (99, 3) 2.53 0.51 0.04 5.60 0.80 0.02

S101 GL (100, 3) 2.17 0.51 0.03 2.74 0.88 0.04

A100 GL (99, 37) 75.26 47.78 2.64 104.47 48.18 1.38

A101 GL (100, 37) 50.65 33.00 1.33 65.46 34.14 0.93

S100 GL (99, 37) 79.34 47.49 1.15 110.62 48.23 1.52

S101 GL (100, 37) 80.65 37.96 0.99 90.14 41.85 1.23

70 CHAPTER 3. CONSTRUCTIVE RECOGNITION OF An AND Sn

References

[1] Seress Á. Permutation group algorithms. Cambridge: Cambridge University Press;
2003.

[2] Dixon JD, Mortimer B. Permutation groups. New York: Springer-Verlag; 1996.

[3] Jordan C. Théorèmes sur les groupes primitifs. Journal de Mathématiques Pures
et Appliquées 1871; 16: 383-408.

[4] Dixon JD. Errata for Dixon and Mortimer “PERMUTATION GROUPS”.
http://people.math.carleton.ca/~jdixon/Errata.pdf
(accessed 28 September 2012).

[5] Wielandt H. Finite permutation groups. New York-London: Academic Press; 1964.

[6] Beals R, Leedham-Green CR, Niemeyer AC, Praeger CR, Seress Á. A black-
box group algorithm for recognizing finite symmetric and alternating groups, I.
Transactions of the American Mathematical Society 2003; 355(5): 2097-2113.

[7] Carmichael RD. Abstract definitions of the symmetric and alternating groups
and certain other permutation groups. Quarterly Journal of Pure and Applied
Mathematics 1922; 49: 226-283.

[8] Coxeter HSM, Moser WOJ. Generators and relations for discrete groups. Berlin-
Göttingen-Heidelberg: Springer-Verlag; 1957.

[9] Tao T. The divisor bound.
http://terrytao.wordpress.com/2008/09/23/the-divisor-bound/
(accessed 4 October 2012).

71

http://people.math.carleton.ca/~jdixon/Errata.pdf
http://terrytao.wordpress.com/2008/09/23/the-divisor-bound/

72 REFERENCES

[10] Bosma W, Cannon J, Playoust C. The Magma algebra system. I. The user language.
Journal of Symbolic Computation 1997; 24: 235-265.

[11] http://www.math.auckland.ac.nz/~obrien/cr.m

[12] Bosma W, Cannon J, Fieker C, Steel A (eds.). Handbook of Magma functions,
Edition 2.18. Sydney; 2011.

[13] http://www.math.auckland.ac.nz/~obrien/test.m

http://www.math.auckland.ac.nz/~obrien/cr.m
http://www.math.auckland.ac.nz/~obrien/test.m

	Abstract
	Introduction
	Motivation
	Permutation groups
	Examples of permutation groups

	Identifying permutation groups
	Motivation
	Primitive permutation groups
	Identifying `3́9`42`"̇613A``45`47`"603AAlt() or `3́9`42`"̇613A``45`47`"603ASym()
	An algorithm to identify `3́9`42`"̇613A``45`47`"603AAlt() or `3́9`42`"̇613A``45`47`"603ASym()

	Constructive recognition of An and Sn
	Motivation
	Presentations for the alternating groups
	Computing the inverse image of a permutation
	Determining the image a black-box group element
	Permutation groups of small degree
	Finding alternating generators
	Finding input cycles
	Performance

	References

